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A Comparison of YOLO Models for License Plate Detection
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I. INTRODUCTION

Visual recognition is a common application of machine 
learning models given its widespread application [1]. 
Visual recognition can be segmented into a series of 
computer vision tasks, namely, image classification, 
object localization, object detection, and object 
segmentation. Image classification involves identifying 
whether a single object class exists within an image. 
Object localization allows for the identification of 
multiple object classes within an image and bounding 
boxes to identify the location of each object. Object 
detection combines image classification and object 
localization to detect multiple object classes and their 
locations in an image. Finally, object segmentation 
provides for the identification of the exact pixels 
associated with an object class as opposed to a bounding 
box. In this paper, I focused on object detection for 
license plates [2].

A. Image Detection Models

In the field of object detection, the methods used have 

evolved over time with each having their benefits. 
Histogram of Oriented Gradients (HOG), Region Based 
Convolutional Neural Network (RCNN), Fast RCNN, 
Faster RCNN, and YOLO are just a few examples of such 
models. Each model employs a different method for 
detecting an object but all except for HOG utilize a 
convolutional neural network (CNN). A CNN is an 
artificial neural network usually applied to analyze 
images. In simple terms, a CNN is designed to process 
pixels from images. If asked to classify an image, a CNN 
takes a group of pixels from the image and compares it 
with the features from the training dataset in order to 
identify and locate an object class. Instead of seeing 
whether each pixel aligns between an image and the 
training image (which can often easily lead to incorrect 
classifications), the CNN is effective because of the 
patterns that it notices across pixels. The YOLO model 
differs from the family of RCNN models in that it 
processes the images differently [3].

B. The YOLO Model

YOLO (You Only Look Once) has become the most 
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prominent model for object detection and localization. 
The YOLO model works by deconstructing an entire 
image into smaller, more manageable chunks and finding 
the center of each object to be classified. Based on the 
center, the model creates countless bounding boxes. Each 
bounding box is then assigned a predicted probability as 
to whether an image class exists in that given region. 
These predicted probabilities are calculated by the model 
based on the data used to train the neural network. The 
final bounding box is determined by applying the 
Intersection Over Union (IOU) threshold across all 
candidate bounding boxes. The model then decides on the 
final bounding box based on the highest predicted 
probability [4], [5].

II. DATASET AND FEATURES

Data from Larxel's Kaggle Dataset of 433 images of 
license plates was used for the present study [6]. The 
dataset consisted of a variety of license plates in different 
settings from different countries and with different 
lighting conditions. This provided a wide range of      
real-world images with obfuscations and dim lighting, all 
of which would measure the model's ability to accurately 
detect the license plate.

Along with each image is an XML file with label 
information including bounding box and object class 
among other information. YOLO models simply require 
five numbers associated with an image stored in a           
space-separated .txt file. The first number corresponds to 
the object class, the second and third correspond to the x 
and y coordinates respectively of the center of the 
bounding box, and the fourth and fifth numbers represent 
the height and width respectively of the bounding box. I 
quickly created a program to extract the necessary values 
from the XML file and calculated the center of the 
bounding box. Since the width and height were already 
delineated in the XML file, I only had to detect and copy 
these values to the .txt file.

III. METHODS

After creating the .txt files for all 433 images, I proceeded 
to download AlexeyAB's darknet repository which 
contained all of the different YOLO models. 

I started with the YOLOv3 model to get baseline 
metrics across our validation dataset. This would help us 
understand where future models were situated in relation 

to the YOLOv3, the model that popularized the use of 
YOLO. The baseline run was performed on the validation 
dataset with the image size set to 416 x 416 pixels. I then 
reduced the pixel size to 320 x 320 for the second run. 
Although the length and width of the images can be 
different, they have to be a multiple of 32 since YOLO 
down-samples the input by 32. I preferred to keep the 
length and width values the same to ensure uniformity 
across all images. The premise behind reducing the image 
sizes was to explore how the accuracy and time varied 
between the larger and smaller image sizes [7].

I then ran the YOLOv4 model on the validation 
dataset to compare its results to the YOLOv3 model. I 
also tried the two different image sizes on the YOLOv4 
model to see which combination would yield the highest 
accuracy and which would yield the fastest detection 
time.

Finally, I experimented with a third factor that could 
affect the accuracy of the model: converting the images to 
grayscale. RGB images can influence a model's accuracy 
by unnecessarily adding a layer of complexity. The 
difference between the model accuracy of RGB and 
grayscale images relies heavily on the dataset. In other 
words, converting images to grayscale does not always 
improve accuracy or prediction time but it can prove to be  
effective with some datasets [8]. Instead of testing 
grayscale conversion on both YOLOv3 and YOLOv4, I 
tested only on the YOLOv4 model. I anticipated the 
YOLOv4 model would be more accurate than the 
YOLOv3 model (as has been discovered by countless 
other studies [9]), so I wanted to understand if the 
accuracy or detection time would improve further with 
grayscale images.

To determine the detection time of the different 
models, I created a video of the images from the dataset 
with a frame rate of 25 frames per second (FPS). The 
model is then run on the video to determine the detection 
time in frames per second. 

Finally, I created precision-recall graphs for the 
YOLOv4 model with 416 x 416 images with varied IOU 
thresholds. The IOU threshold is usually preset to 0.5, 
meaning the overlap between the predicted and expected 
bounding boxes must be above 0.5. In order to create a 
precision-recall curve, the predictions are arranged in 
descending order based on predicted probability. The 
IOU threshold then determines whether a given 
prediction is counted as true positive, false positive, or 
false negative [10].
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IV. RESULTS AND DISCUSSION

A. Performance Metrics

The YOLO model is unique because it is both accurate 
and fast and it is able to work in real-time [11]. Machine 
learning models are measured on several different 
metrics. Some of the key metrics I will be considering 
here are:

Ä Precision

Ä Recall

Ä F  score1

Ä Mean Average Precision (mAP)

Ä Detection speed

Precision and recall are defined as follows:

Precision = True Positive / (True Positive + False 
Positive)                                                       (1)

Recall = True Positive / (True Positive + False 
Negative)                                                      (2)

In practical terms, precision is defined as the ratio of 
correctly predicted positive detections (true positives) to 
the total number of positive detections for a given class 
(true positives + false positives). Recall is defined as the 
ratio of the correctly predicted positive detections (true 
positives) to the total number of instances of a given class 
(true positives + false negatives). Precision and recall 
tend to be inversely related in most real-world scenarios. 
As efforts are taken to improve the precision of a model, 

these efforts potentially eliminate true positive detections 
resulting in a lower recall.

For this reason, it is important to optimize model 
configuration parameters to identify the point where 
precision and recall can be maximized. The F  score helps 1

in this regard as it is the harmonic mean of precision and 
recall as shown in the eq. (3), expressed both in terms of 
precision and recall as well as true positives (TP), false 
positives (FP), and false negatives (FN).

F = (2*precision*recall) / (precision + recall) 1 

  = TP / (TP+ ½ (FP+ FN)                                 (3)

Perfect scores in precision and recall would result in a 
perfect F  score.1

In object detection models, another metric used to 
measure the correctness and reliability of a model is the 
mean average precision (mAP). The average precision 
(AP) is given by the integral of the precision-recall curve 
for a given IOU (Intersection Over Union) threshold. 
Conceptually, the AP of a model is maximized when both 
precision and recall are maximized, and this agrees with 
eq. (4) where p(r) is a function of the precision p as it 
varies with the recall r integrated from 0 to 1 (the range of 
the precision) [12].

     

The mAP is determined by averaging the APs across 
several IOU thresholds [13].

Beyond the metrics that help measure the reliability of 
a model, it is equally critical to evaluate the runtime of the 
model. Each image detection model faces a trade-off 

Fig. 1. Intersection Over Union (IOU)

 1    AP  = �ò    ( p (r)  dr)                                  (4)0
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between accuracy and speed. Finding the right balance 
between the two is crucial to optimizing the overall 
efficiency of a model. Thus, I also consider the time it 
takes for each model to predict a given object class and 
compare how the mAP may be compromised with faster 
runtimes.

While not considered a performance-related metric, 
the IOU threshold is an important configuration 
parameter in object detection models to optimize 
performance. The IOU is calculated simply by dividing 
the area of overlap of the predicted and labeled bounding 
boxes by the area of union of these same two bounding 
boxes. Fig. 1 is an example.

IOU = Area of Intersection / Area of Union    (5)

IOU thresholds are generally set at 0.5 but can 
vary based on the application. In cases where the 
model is being used to count the presence of a given 
object class, a smaller IOU threshold can be suitable. 
However, in our application, it is important to 
capture a sufficient portion of the license plate so 
that the detected image can then be used with Optical 
Character Recognition (OCR) to read the license 
plate. 

B. Results and Discussion

The results from the various model runs are given in 
Table I.

As shown in other studies, the YOLOv4 model 
performed with higher accuracy than the YOLOv3 model 
for both image sizes. With YOLOv4 416 x 416, the mAP 
was 90.35 compared to an mAP of 84.24 with YOLOv3       

416 x 416. Similarly, with image size set to 320 x 320, 
YOLOv4outperformed YOLOv3, 89.27 to 81.98 
respectively.

The image size has some impact on the accuracy, with 
larger image sizes producing more accurate predictions. 
The YOLOv3 models with images of size 416 x 416 
resulted in an improved mAP of 84.24 compared with the 
model with images of size 320 x 320 which only had an 
mAP of 81.98. For YOLOv4, the mAP of the model that 
ran 320 x 320 was 89.27, while it was 90.35 for the model 
with image sizes of 416 x 416. Since both models had 
higher mAP values when the size of the images was 
increased, I concluded that increasing size did correlate 
with improved accuracy. I concluded that with the lower 
resolution, the model would not be able to create precise 
bounding boxes as detecting the boundaries for the 
license plates is more difficult. With higher resolution 
images, the model would more clearly distinguish the 
license plate from other objects in the image.

It is also interesting to note that the metrics for each 
model are consistent across different trials. Since the 
precision, recall, and F  Score are closely related in what 1

they measure (especially the F  Score as it depends on the 1

precision and recall) when one of the three is greater for 
one model, it is likely that the others are also greater. This 
trend does falter with the IOU values which are calculated 
differently from the other performance metrics and thus, 
a higher IOU value does not necessarily warrant a higher 
mAP or F  Score. 1

With regards to detection time, the YOLOv4 model 
proved to be slower for both image sizes. The YOLOv4 
detection times for both the 416 x 416 and 320 x 320 
image sizes were 71.5 and 41.7 fps respectively, while the 
corresponding times for the YOLOv3 model were 87.3 
and 65.5 fps. This was unexpected as the YOLOv4 is 

TABLE I. 

RESULTS FROM YOLO TRIALS

 mAP IOU Precision Recall F1-Score FPS

YOLOv3 320 x 320 81.98 66.19 0.86 0.83 0.85 87.3

YOLOv3 416 x 416 84.24 65.45 0.87 0.87 0.87 65.5

YOLOv4 320 x 320 89.27 69.87 0.88 0.89 0.88 71.5

YOLOv4 416 x 416 90.35 71.01 0.91 0.89 0.90 54.7

YOLOv4 320 x 320 Grayscale 89.92 68.35 0.88 0.9 0.89 61.8

YOLOv4 416 x 416 Grayscale 90.99 68.75 0.89 0.95 0.92 51.5
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designed for better performance times when compared to 
YOLOv3. The reasons for this decrease can be a topic for 
future research.

With both YOLOv3 and YOLOv4, detection times 
increased with smaller image sizes. This was to be 
expected as images of lower resolution decrease the time 
needed to detect a license plate within the image. 

The YOLOv4 416 x 416 grayscale model had the 
highest accuracy among the models. While there was a 
marginal increase in the mAP between the grayscale and 
RGB versions of the YOLOv4 416 x 416 models, there 
was a larger increase in the F  scores with the YOLOv4 1

416 x 416 grayscale model having the highest F  at 0.92. 1

However, it was evident that this high accuracy came at 
the expense of time. The detection time for both trials of 
the grayscale model was slower than their RGB 
counterparts. Intuitively, grayscale models should be 
faster as the monochromatic images should reduce 
processing time but this could vary with the dataset, and 
especially seeing that accuracy increased, it does follow 
that the trade-off would be a decrease in detection time. 
Also, the difference in time detection between the 

YOLOv4 416 x 416 grayscale and RGB models was only 
3.2 FPS (51.5 vs 54.7 respectively). The YOLOv4 
grayscale for the model based on smaller image 
resolution showed a notable reduction in detection time 
from its RGB counterpart. The 320 x 320 grayscale had 
an FPS of 61.8, while the model with the RGB images had 
an FPS of 71.5. 

C. Precision-Recall Curve

Precision-recall curves were created for the YOLOv4  
416 x 416 model. The graph below depicts the precision-
recall curves for IOU threshold between 0.4 and 0.9. 
These curves are plotted based on 0.1 increments in 
recall.

Each IOU curve is determined by plotting a series of 
precision and recall points for varying confidence 
thresholds. As shown in Fig. 2, the precision tends to 
decrease as the recall increases. This is intuitive and to be 
expected. With a high confidence threshold, there will be 
fewer and more accurate positive detections leading to a 
high precision but low recall. As the confidence threshold 
is dropped, the recall increases as the precision drops. 
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This process is repeated for several IOU thresholds. As 
the IOU threshold increases to 0.9, the point where 
precision and recall are maximized moves closer to the 
origin. At higher IOU thresholds, only predicted 
bounding boxes with extremely high overlap are 
considered. The number of true positives decreases at an 
IOU threshold of 0.9 as the model does not classify 
license plates that would otherwise be classified at lower 
thresholds. However, the number of false positives also 
decreases as the model sets a higher threshold for which 
images should be classified as having license plates. 

The recall also decreases at higher IOU thresholds for 
a similar reason. Since the recall also depends on the 
number of true positives, it will also decrease at higher 
IOU thresholds as the model will miss a lot of the license 
plates that should be classified correctly. Additionally, 
the false negatives will also be high at such a high IOU 
threshold as the model will not classify license plates as 
such when the IOU threshold is lower.

With regards to lower thresholds, the precision and 
recall are both higher as there are more true positives. 
Many license plates that would not otherwise be detected 
at higher IOU thresholds are now detected. However, one 
disadvantage of setting a low IOU threshold is the 
increase in false positives. The model at lower thresholds 
may allow bounding boxes that would otherwise be 
rejected at higher thresholds. The recall also increases 
because the number of false negatives will decrease with 
lower thresholds.

Although at first, it may seem that setting lower IOU 
thresholds are ideal as they maximize the precision and 
recall, it is important to consider the application for which 
the model is being used. Lower IOU thresholds can be 
used if the purpose of the model is simply to count the 
number of objects in a certain image. However, if the 
purpose is to accurately detect an object with a precise 
bounding box, higher thresholds (perhaps 0.5 or 0.6) are 
ideal as they produce higher quality bounding boxes. 
Given that our intent is object detection and localization 
where it is important to determine the exact location and 
full bounding box for a license plate, the highest IOU 
threshold that does not significantly compromise on the 
precision and recall is ideal. 

Based on the graph, an IOU of between 0.5 and 0.6 
would work well as it is the highest IOU threshold that 
provides for both a precision and recall of greater than 
0.9.

V. CONCLUSION

Through this analysis, I was able to compare the different 
YOLO model versions as well as the impact of different 
image sizes in running the model and converting the 
dataset into grayscale. 

As part of future research, it would be interesting to 
explore why YOLOv4 performed with a slower detection 
time on our dataset. This was contrary to what was 
expected based on earlier studies. In addition, it would be 
interesting to understand why grayscale images allowed 
for higher accuracy on this license plate detection and 
why the detection time was lower for the model based on 
grayscale images as compared to RGB images.

Future work can also consider additional image 
preprocessing steps to evaluate their impact on model 
performance. One such preprocessing step could be 
varying the contrast of the images [14]. This can make the 
colors more vibrant and thus, edge detection for the 
model easier. Another step that can be taken is to de-noise 
the images. Many datasets have images that contain a lot 
of noise or extraneous color and brightness which can 
often impede the accuracy or detection time. These 
preprocessing steps are avenues for further research and 
exploration of YOLO models applied to license plate 
detection. 
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APPENDIX

The code for the work described in this paper can be 
found at:

https://drive.google.com/drive/folders/1i2e_xMApt-
1yIGnbQMdrMg2uOBniUWTf?usp=sharing
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