
Manuscript Received : October 3, 2021 ; Revised : November 15, 2021 ; Accepted : November 20, 2021. Date of Publication :
December 5, 2021

1A. Chakravarthy is Student Researcher (Computer Science), at American International School 1106, Jawaharlal Nehru Road,
T h a r a m a n i , C h e n n a i , T a m i l N a d u 6 0 0 1 1 3 . I n d i a .
Email : arjanchak@gmail.com ; ORCID iD : https://orcid.org/0000-0002-6691-154X

DOI : https//doi.org/10.17010/ijcs/2021/v6/i6/167643

A Comparison of YOLO Models for License Plate Detection

1 Arjan Chakravarthy

I. INTRODUCTION

Visual recognition is a common application of machine
learning models given its widespread application [1].
Visual recognition can be segmented into a series of
computer vision tasks, namely, image classification,
object localization, object detection, and object
segmentation. Image classification involves identifying
whether a single object class exists within an image.
Object localization allows for the identification of
multiple object classes within an image and bounding
boxes to identify the location of each object. Object
detection combines image classification and object
localization to detect multiple object classes and their
locations in an image. Finally, object segmentation
provides for the identification of the exact pixels
associated with an object class as opposed to a bounding
box. In this paper, I focused on object detection for
license plates [2].

A. Image Detection Models

In the field of object detection, the methods used have

evolved over time with each having their benefits.
Histogram of Oriented Gradients (HOG), Region Based
Convolutional Neural Network (RCNN), Fast RCNN,
Faster RCNN, and YOLO are just a few examples of such
models. Each model employs a different method for
detecting an object but all except for HOG utilize a
convolutional neural network (CNN). A CNN is an
artificial neural network usually applied to analyze
images. In simple terms, a CNN is designed to process
pixels from images. If asked to classify an image, a CNN
takes a group of pixels from the image and compares it
with the features from the training dataset in order to
identify and locate an object class. Instead of seeing
whether each pixel aligns between an image and the
training image (which can often easily lead to incorrect
classifications), the CNN is effective because of the
patterns that it notices across pixels. The YOLO model
differs from the family of RCNN models in that it
processes the images differently [3].

B. The YOLO Model

YOLO (You Only Look Once) has become the most

Abstract

License plate detection and recognition (LPDR) has become an increasingly popular field of study under image recognition. The
ability to autonomously create a bounding box around a license plate using machine learning models for image recognition is an
important component of intelligent transportation systems. The YOLO model has become a popular CNN model for image detection
because of its speed and accuracy. This work focuses on the use of the YOLO model for object localization as applied to license
plate detection. The research compares the accuracy and speed between the YOLOv3 and YOLOv4 models along with various
configuration parameters and finds that the YOLOv4 model is most accurate while the YOLOv3 with reduced image resolution is the
fastest in prediction time.

Keywords : Image recognition, LPDR, YOLO model

Indian Journal of Computer Science • November - December 2021 35

prominent model for object detection and localization.
The YOLO model works by deconstructing an entire
image into smaller, more manageable chunks and finding
the center of each object to be classified. Based on the
center, the model creates countless bounding boxes. Each
bounding box is then assigned a predicted probability as
to whether an image class exists in that given region.
These predicted probabilities are calculated by the model
based on the data used to train the neural network. The
final bounding box is determined by applying the
Intersection Over Union (IOU) threshold across all
candidate bounding boxes. The model then decides on the
final bounding box based on the highest predicted
probability [4], [5].

II. DATASET AND FEATURES

Data from Larxel's Kaggle Dataset of 433 images of
license plates was used for the present study [6]. The
dataset consisted of a variety of license plates in different
settings from different countries and with different
lighting conditions. This provided a wide range of
real-world images with obfuscations and dim lighting, all
of which would measure the model's ability to accurately
detect the license plate.

Along with each image is an XML file with label
information including bounding box and object class
among other information. YOLO models simply require
five numbers associated with an image stored in a
space-separated .txt file. The first number corresponds to
the object class, the second and third correspond to the x
and y coordinates respectively of the center of the
bounding box, and the fourth and fifth numbers represent
the height and width respectively of the bounding box. I
quickly created a program to extract the necessary values
from the XML file and calculated the center of the
bounding box. Since the width and height were already
delineated in the XML file, I only had to detect and copy
these values to the .txt file.

III. METHODS

After creating the .txt files for all 433 images, I proceeded
to download AlexeyAB's darknet repository which
contained all of the different YOLO models.

I started with the YOLOv3 model to get baseline
metrics across our validation dataset. This would help us
understand where future models were situated in relation

to the YOLOv3, the model that popularized the use of
YOLO. The baseline run was performed on the validation
dataset with the image size set to 416 x 416 pixels. I then
reduced the pixel size to 320 x 320 for the second run.
Although the length and width of the images can be
different, they have to be a multiple of 32 since YOLO
down-samples the input by 32. I preferred to keep the
length and width values the same to ensure uniformity
across all images. The premise behind reducing the image
sizes was to explore how the accuracy and time varied
between the larger and smaller image sizes [7].

I then ran the YOLOv4 model on the validation
dataset to compare its results to the YOLOv3 model. I
also tried the two different image sizes on the YOLOv4
model to see which combination would yield the highest
accuracy and which would yield the fastest detection
time.

Finally, I experimented with a third factor that could
affect the accuracy of the model: converting the images to
grayscale. RGB images can influence a model's accuracy
by unnecessarily adding a layer of complexity. The
difference between the model accuracy of RGB and
grayscale images relies heavily on the dataset. In other
words, converting images to grayscale does not always
improve accuracy or prediction time but it can prove to be
effective with some datasets [8]. Instead of testing
grayscale conversion on both YOLOv3 and YOLOv4, I
tested only on the YOLOv4 model. I anticipated the
YOLOv4 model would be more accurate than the
YOLOv3 model (as has been discovered by countless
other studies [9]), so I wanted to understand if the
accuracy or detection time would improve further with
grayscale images.

To determine the detection time of the different
models, I created a video of the images from the dataset
with a frame rate of 25 frames per second (FPS). The
model is then run on the video to determine the detection
time in frames per second.

Finally, I created precision-recall graphs for the
YOLOv4 model with 416 x 416 images with varied IOU
thresholds. The IOU threshold is usually preset to 0.5,
meaning the overlap between the predicted and expected
bounding boxes must be above 0.5. In order to create a
precision-recall curve, the predictions are arranged in
descending order based on predicted probability. The
IOU threshold then determines whether a given
prediction is counted as true positive, false positive, or
false negative [10].

36 Indian Journal of Computer Science • November - December 2021

IV. RESULTS AND DISCUSSION

A. Performance Metrics

The YOLO model is unique because it is both accurate
and fast and it is able to work in real-time [11]. Machine
learning models are measured on several different
metrics. Some of the key metrics I will be considering
here are:

Ä Precision

Ä Recall

Ä F score1

Ä Mean Average Precision (mAP)

Ä Detection speed

Precision and recall are defined as follows:

Precision = True Positive / (True Positive + False
Positive) (1)

Recall = True Positive / (True Positive + False
Negative) (2)

In practical terms, precision is defined as the ratio of
correctly predicted positive detections (true positives) to
the total number of positive detections for a given class
(true positives + false positives). Recall is defined as the
ratio of the correctly predicted positive detections (true
positives) to the total number of instances of a given class
(true positives + false negatives). Precision and recall
tend to be inversely related in most real-world scenarios.
As efforts are taken to improve the precision of a model,

these efforts potentially eliminate true positive detections
resulting in a lower recall.

For this reason, it is important to optimize model
configuration parameters to identify the point where
precision and recall can be maximized. The F score helps 1

in this regard as it is the harmonic mean of precision and
recall as shown in the eq. (3), expressed both in terms of
precision and recall as well as true positives (TP), false
positives (FP), and false negatives (FN).

F = (2*precision*recall) / (precision + recall) 1

 = TP / (TP+ ½ (FP+ FN) (3)

Perfect scores in precision and recall would result in a
perfect F score.1

In object detection models, another metric used to
measure the correctness and reliability of a model is the
mean average precision (mAP). The average precision
(AP) is given by the integral of the precision-recall curve
for a given IOU (Intersection Over Union) threshold.
Conceptually, the AP of a model is maximized when both
precision and recall are maximized, and this agrees with
eq. (4) where p(r) is a function of the precision p as it
varies with the recall r integrated from 0 to 1 (the range of
the precision) [12].

The mAP is determined by averaging the APs across
several IOU thresholds [13].

Beyond the metrics that help measure the reliability of
a model, it is equally critical to evaluate the runtime of the
model. Each image detection model faces a trade-off

Fig. 1. Intersection Over Union (IOU)

 1 AP = �ò (p (r) dr) (4)0

Indian Journal of Computer Science • November - December 2021 37

between accuracy and speed. Finding the right balance
between the two is crucial to optimizing the overall
efficiency of a model. Thus, I also consider the time it
takes for each model to predict a given object class and
compare how the mAP may be compromised with faster
runtimes.

While not considered a performance-related metric,
the IOU threshold is an important configuration
parameter in object detection models to optimize
performance. The IOU is calculated simply by dividing
the area of overlap of the predicted and labeled bounding
boxes by the area of union of these same two bounding
boxes. Fig. 1 is an example.

IOU = Area of Intersection / Area of Union (5)

IOU thresholds are generally set at 0.5 but can
vary based on the application. In cases where the
model is being used to count the presence of a given
object class, a smaller IOU threshold can be suitable.
However, in our application, it is important to
capture a sufficient portion of the license plate so
that the detected image can then be used with Optical
Character Recognition (OCR) to read the license
plate.

B. Results and Discussion

The results from the various model runs are given in
Table I.

As shown in other studies, the YOLOv4 model
performed with higher accuracy than the YOLOv3 model
for both image sizes. With YOLOv4 416 x 416, the mAP
was 90.35 compared to an mAP of 84.24 with YOLOv3

416 x 416. Similarly, with image size set to 320 x 320,
YOLOv4outperformed YOLOv3, 89.27 to 81.98
respectively.

The image size has some impact on the accuracy, with
larger image sizes producing more accurate predictions.
The YOLOv3 models with images of size 416 x 416
resulted in an improved mAP of 84.24 compared with the
model with images of size 320 x 320 which only had an
mAP of 81.98. For YOLOv4, the mAP of the model that
ran 320 x 320 was 89.27, while it was 90.35 for the model
with image sizes of 416 x 416. Since both models had
higher mAP values when the size of the images was
increased, I concluded that increasing size did correlate
with improved accuracy. I concluded that with the lower
resolution, the model would not be able to create precise
bounding boxes as detecting the boundaries for the
license plates is more difficult. With higher resolution
images, the model would more clearly distinguish the
license plate from other objects in the image.

It is also interesting to note that the metrics for each
model are consistent across different trials. Since the
precision, recall, and F Score are closely related in what 1

they measure (especially the F Score as it depends on the 1

precision and recall) when one of the three is greater for
one model, it is likely that the others are also greater. This
trend does falter with the IOU values which are calculated
differently from the other performance metrics and thus,
a higher IOU value does not necessarily warrant a higher
mAP or F Score. 1

With regards to detection time, the YOLOv4 model
proved to be slower for both image sizes. The YOLOv4
detection times for both the 416 x 416 and 320 x 320
image sizes were 71.5 and 41.7 fps respectively, while the
corresponding times for the YOLOv3 model were 87.3
and 65.5 fps. This was unexpected as the YOLOv4 is

TABLE I.

RESULTS FROM YOLO TRIALS

 mAP IOU Precision Recall F1-Score FPS

YOLOv3 320 x 320 81.98 66.19 0.86 0.83 0.85 87.3

YOLOv3 416 x 416 84.24 65.45 0.87 0.87 0.87 65.5

YOLOv4 320 x 320 89.27 69.87 0.88 0.89 0.88 71.5

YOLOv4 416 x 416 90.35 71.01 0.91 0.89 0.90 54.7

YOLOv4 320 x 320 Grayscale 89.92 68.35 0.88 0.9 0.89 61.8

YOLOv4 416 x 416 Grayscale 90.99 68.75 0.89 0.95 0.92 51.5

38 Indian Journal of Computer Science • November - December 2021

designed for better performance times when compared to
YOLOv3. The reasons for this decrease can be a topic for
future research.

With both YOLOv3 and YOLOv4, detection times
increased with smaller image sizes. This was to be
expected as images of lower resolution decrease the time
needed to detect a license plate within the image.

The YOLOv4 416 x 416 grayscale model had the
highest accuracy among the models. While there was a
marginal increase in the mAP between the grayscale and
RGB versions of the YOLOv4 416 x 416 models, there
was a larger increase in the F scores with the YOLOv4 1

416 x 416 grayscale model having the highest F at 0.92. 1

However, it was evident that this high accuracy came at
the expense of time. The detection time for both trials of
the grayscale model was slower than their RGB
counterparts. Intuitively, grayscale models should be
faster as the monochromatic images should reduce
processing time but this could vary with the dataset, and
especially seeing that accuracy increased, it does follow
that the trade-off would be a decrease in detection time.
Also, the difference in time detection between the

YOLOv4 416 x 416 grayscale and RGB models was only
3.2 FPS (51.5 vs 54.7 respectively). The YOLOv4
grayscale for the model based on smaller image
resolution showed a notable reduction in detection time
from its RGB counterpart. The 320 x 320 grayscale had
an FPS of 61.8, while the model with the RGB images had
an FPS of 71.5.

C. Precision-Recall Curve

Precision-recall curves were created for the YOLOv4
416 x 416 model. The graph below depicts the precision-
recall curves for IOU threshold between 0.4 and 0.9.
These curves are plotted based on 0.1 increments in
recall.

Each IOU curve is determined by plotting a series of
precision and recall points for varying confidence
thresholds. As shown in Fig. 2, the precision tends to
decrease as the recall increases. This is intuitive and to be
expected. With a high confidence threshold, there will be
fewer and more accurate positive detections leading to a
high precision but low recall. As the confidence threshold
is dropped, the recall increases as the precision drops.

Indian Journal of Computer Science • November - December 2021 39

Fig. 2. Precision-Recall Curves

This process is repeated for several IOU thresholds. As
the IOU threshold increases to 0.9, the point where
precision and recall are maximized moves closer to the
origin. At higher IOU thresholds, only predicted
bounding boxes with extremely high overlap are
considered. The number of true positives decreases at an
IOU threshold of 0.9 as the model does not classify
license plates that would otherwise be classified at lower
thresholds. However, the number of false positives also
decreases as the model sets a higher threshold for which
images should be classified as having license plates.

The recall also decreases at higher IOU thresholds for
a similar reason. Since the recall also depends on the
number of true positives, it will also decrease at higher
IOU thresholds as the model will miss a lot of the license
plates that should be classified correctly. Additionally,
the false negatives will also be high at such a high IOU
threshold as the model will not classify license plates as
such when the IOU threshold is lower.

With regards to lower thresholds, the precision and
recall are both higher as there are more true positives.
Many license plates that would not otherwise be detected
at higher IOU thresholds are now detected. However, one
disadvantage of setting a low IOU threshold is the
increase in false positives. The model at lower thresholds
may allow bounding boxes that would otherwise be
rejected at higher thresholds. The recall also increases
because the number of false negatives will decrease with
lower thresholds.

Although at first, it may seem that setting lower IOU
thresholds are ideal as they maximize the precision and
recall, it is important to consider the application for which
the model is being used. Lower IOU thresholds can be
used if the purpose of the model is simply to count the
number of objects in a certain image. However, if the
purpose is to accurately detect an object with a precise
bounding box, higher thresholds (perhaps 0.5 or 0.6) are
ideal as they produce higher quality bounding boxes.
Given that our intent is object detection and localization
where it is important to determine the exact location and
full bounding box for a license plate, the highest IOU
threshold that does not significantly compromise on the
precision and recall is ideal.

Based on the graph, an IOU of between 0.5 and 0.6
would work well as it is the highest IOU threshold that
provides for both a precision and recall of greater than
0.9.

V. CONCLUSION

Through this analysis, I was able to compare the different
YOLO model versions as well as the impact of different
image sizes in running the model and converting the
dataset into grayscale.

As part of future research, it would be interesting to
explore why YOLOv4 performed with a slower detection
time on our dataset. This was contrary to what was
expected based on earlier studies. In addition, it would be
interesting to understand why grayscale images allowed
for higher accuracy on this license plate detection and
why the detection time was lower for the model based on
grayscale images as compared to RGB images.

Future work can also consider additional image
preprocessing steps to evaluate their impact on model
performance. One such preprocessing step could be
varying the contrast of the images [14]. This can make the
colors more vibrant and thus, edge detection for the
model easier. Another step that can be taken is to de-noise
the images. Many datasets have images that contain a lot
of noise or extraneous color and brightness which can
often impede the accuracy or detection time. These
preprocessing steps are avenues for further research and
exploration of YOLO models applied to license plate
detection.

AUTHOR'S CONTRIBUTION

Arjan Chakravarthy is the sole author and has performed
the entirety of the work described in this paper. He
prepared the training and test datasets, ran the various
models against the data, and analyzed the output.

CONFLICT OF INTEREST

The author certifies that he has no affiliations with or
involvement in any organization or entity with any
financial interest or non-financial interest in the subject
matter or materials discussed in the manuscript.

FUNDING ACKNOWLEDGEMENT

The author has not received any financial support for the
research, authorship, and/or for the publication of the
article.

40 Indian Journal of Computer Science • November - December 2021

REFERENCES

[1] S. Pal and S. K. Behera, “Traffic sign recognition for
self driving vehicles using matlab and tensorflow,”
Indian J. Comput. Sci., vol. 5, no. 6, Nov.-Dec. 2020, doi:
10.17010/ijcs/2020/v5/i6/157502

[2] O. Russakovsky et al., "ImageNet large scale visual
recognition challenge." 2015. [Online]. Available: arXiv:
1409.0575 [cs.CV]

[3] P. Dwivedi. “YOLOv5 compared to faster RCNN.
Who Wins?” Towards data science.com. (accessed : May
7, 2021). https://towardsdatascience.com/yolov5-
compared-to-faster-rcnn-who-wins-a771cd6c9fb4. .

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
"You only look once: Unified, real-time object
detection," in 2016 IEEE Conf. Comput. Vision Pattern
Recognition (CVPR), 2016, pp. 779-788. [Online].
A v a i l a b l e : h t t p s : / / w w w . c v -
foundation.org/openaccess/content_cvpr_2016/papers/
Redmon_You_Only_Look_CVPR_2016_paper.pdf

[5] G. Karimi. “Introduction to Yolo algorithm for object
d e t e c t i o n , ” S e c t i o n . i o .
h t t p s : / / w w w . s e c t i o n . i o / e n g i n e e r i n g -
education/introduction-to-yolo-algorithm-for-object-
detection/ (accessed May 7, 2021).

[6] “Car License Plate Detection, Version 1”, Kaggle,
Sep. 2020. https://www.kaggle.com/andrewmvd/car-
plate-detection/activity (accessed May 10, 2021).

[7]] D. Radečić. “How to detect license plates with
Python and YOLO.” Towards Data Science.com.
https://towardsdatascience.com/how-to-detect-license-
plates-with-python-and-yolo-8842aa6d25f7 (accessed
May 6, 2021).

[8] P. Canuma. “Image pre-processing.” Medium.com.
https://prince-canuma.medium.com/image-pre-
processing-c1aec0be3edf (accessed May 9, 2021).

[9] J. Solawetz. “YOLOv4 - Ten tactics to build a better
model.” robloflow. https://blog.roboflow.com/yolov4-
tactics/ (accessed May 12, 2021).

[10] A. Rosebrock. “Intersection over Union (IOU) for
O b j e c t D e t e c t i o n . ” P y I m a g e S e a r c h . c o m ,

https://www.pyimagesearch.com/2016/11/07/intersectio
n-over-union-iou-for-object-detection/ (accessed May
18, 2021).

[11] R. Rajkumar, A. Kaushal, and A. Saha,
“Accelerating machine learning research using transfer
learning,” Indian J. Comput. Sci., vol. 3, no. 2, Mar.-Apr.
2018, doi: 10.17010/ijcs/2018/v3/i2/123212

[12] T. C. Arlen. “Understanding the MAP evaluation
metric for object detection.” Medium.com.
https://medium.com/@timothycarlen/understanding-
the-map-evaluation-metric-for-object-detection-
a07fe6962cf3 (accessed March 7, 2021).

[13] J. Hui, “Map (Mean Average Precision) for Object
Detection.” Medium.com. [Online]. Available:
https://jonathan-hui.medium.com/map-mean-average-
precision-for-object-detection-45c121a31173 (accessed
May 14, 2021).

[14] J. Nelson, “When to use contrast as a preprocessing
step,” roboflow.com. https://blog.roboflow.com/when-
to-use-contrast-as-a-preprocessing-step/ (accessed May
19, 2021).

APPENDIX

The code for the work described in this paper can be
found at:

https://drive.google.com/drive/folders/1i2e_xMApt-
1yIGnbQMdrMg2uOBniUWTf?usp=sharing

Indian Journal of Computer Science • November - December 2021 41

42 Indian Journal of Computer Science • November - December 2021

About the Author

Arjan Chakravarthy has a background in electronics and software development with a focus on IoT

applications. His most recent work focuses on image processing and machine learning as applied to

image recognition and object localization.

