Comparison of VaR Methods : The Case of Indian Equities
DOI:
https://doi.org/10.17010/ijf/2018/v12i1/120739Keywords:
Backtesting
, Historical Var, Kupiec's POF Test, GARCH (1, 1) VaR, Volatility Weighted Historical Simulation VaR, Normal VaR, Value At RiskC52
, C53, C14, C15, G32Paper Submission Date
, February 28, 2017, Paper sent back for Revision, November 4, Paper Acceptance Date, December 15, 2017.Abstract
Different approaches to calculate VaR are based on different assumptions. This study dealt with a comparative evaluation of four Value-at-Risk models namely, historical VaR, normal VaR, GARCH (1,1) VaR, and volatility weighted historical simulation (VWHS) VaR in terms of their prediction accuracy for an active portfolio of Indian equities. Daily NAVs of 34 Indian equity growth mutual fund schemes for a period of 10 years were used to calculate 95% VaR and backtest the results using Kupiec's POF test for all four VaR models. To identify the better performing VaR methods accurately, the analysis was performed in two phases : pre-crisis analysis and post crisis analysis. We concluded that there was a significant (insignificant) difference in performance of different VaR models if market conditions during VaR calculation and VaR backtesting periods were in contrast (congruence) to each other. The study found VWHS to be a better methodology for measuring VaR of an active portfolio of Indian equity stocks in both phases of the analysis. The results are relevant for traders & retail and institutional investors who hold stocks of Indian companies in their portfolio and need to calculate VaR as a measure of market risk for their positions.Downloads
Downloads
Published
How to Cite
Issue
Section
References
Abad, P., & Benito, S. (2013). A detailed comparison of value at risk estimates. Mathematics and Computers in Simulation, 94, 258 - 276. doi : http://dx.doi.org/10.1016/j.matcom.2012.05.011
Abad, P., Benito, S., & López, C. (2014). A comprehensive review of value at risk methodologies. The Spanish Review of Financial Economics, 12(1), 15 - 32. DOI : http://dx.doi.org/10.1016/j.srfe.2013.06.001
Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4), 885 - 905. DOI: http://dx.doi.org/10.2307/2527343
Bali, T. G., Mo, H., & Tang, Y. (2008). The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR. Journal of Banking & Finance, 32(2), 269-282. DOI: http://dx.doi.org/10.1016/j.jbankfin.2007.03.009
Bao, Y., Lee, T., & Saltoglu, B. (2006). Evaluating predictive performance of value-at-risk models in emerging markets: A reality check. Journal of Forecasting, 25(2), 101-128. DOI: http://dx.doi.org/10.1002/for.977
Bhat, A. P. (2015). A test of alternative value-at-risk models during volatile periods. Indian Journal of Finance, 9 (8), 19 - 33. doi : http://dx.doi.org/10.17010/ijf/2015/v9i8/74560
Brooks, C., & Persand, G. (2002). Model choice and value-at-risk performance. Financial Analysts Journal, 58 (5), 87-97. DOI : http://dx.doi.org/10.2469/faj.v58.n5.2471
Campbell, S. D. (2007). A review of backtesting and backtesting procedures. Journal of Risk, 9 (2), 1-17. DOI : http://dx.doi.org/10.21314/jor.2007.146
Chou, H., & Wang, D. K. (2013). Estimation of tail-related value-at-risk measures: Range-based extreme value approach. Quantitative Finance, 14(2), 293-304. DOI : http://dx.doi.org/10.1080/14697688.2013.819113
Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39 (4), 841- 862. DOI : http://dx.doi.org/10.2307/2527341
Christoffersen, P. F., & Diebold, F. X. (2000). How relevant is volatility forecasting for financial risk management ? Review of Economics and Statistics, 82 (1), 12-22. DOI : http://dx.doi.org/10.1162/003465300558597
Christoffersen, P., & Pelletier, D. (2004). Backtesting value-at-risk: A duration-based approach. Journal of Financial Econometrics, 2(1), 84 - 108. DOI : http://dx.doi.org/10.1093/jjfinec/nbh004
Consigli, G. (2002). Tail estimation and mean - VaR portfolio selection in markets subject to financial instability. Journal of Banking & Finance, 26 (7), 1355 - 1382. DOI : http://dx.doi.org/10.1016/s0378-4266(02)00267-4
Dan..elsson, J. (2002). The emperor has no clothes: Limits to risk modelling. Journal of Banking & Finance, 26 (7), 1273-1296. DOI : http://dx.doi.org/10.1016/s0378-4266(02)00263-7
Dani.elsson, J. (2011). Financial risk forecasting (1st ed.). Chichester : John Wiley.
Danielsson, J., & De Vries, C. (2000). Value-at-risk and extreme returns. Annales D'Economie Et De Statistique, 60, 239 - 270. doi:10.2307/20076262
Das, A., Basu, P. N., & Ghoshal, T. K. (2009). Stochastic volatility model for Indian security indices: VaR estimation and backtesting. Indian Journal of Finance, 3 (9), 43 - 47.
Dowd, K. (2006). Measuring market risk (1st ed.). Chichester : John Wiley & Sons.
Ergen, I. (2014). Two-step methods in VaR prediction and the importance of fat tails. Quantitative Finance, 15(6), 1013 - 1030. DOI : http://dx.doi.org/10.1080/14697688.2014.942230
Ergun, A. T., & Jun, J. (2010). Time-varying higher-order conditional moments and forecasting intraday VaR and expected shortfall. The Quarterly Review of Economics and Finance, 50 (3), 264 - 272. DOI : http://dx.doi.org/10.1016/j.qref.2010.03.003
Gencay, R., & Selcuk, F. (2004). Extreme value theory and value-at-risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287-303. DOI : http://dx.doi.org/10.1016/j.ijforecast.2003.09.005
Giannopoulos, K., & Tunaru, R. (2005). Coherent risk measures under filtered historical simulation. Journal of Banking & Finance, 29 (4), 979 - 996. DOI : http://dx.doi.org/10.1016/j.jbankfin.2004.08.009
Gonzalez-Rivera, G., Lee, T., & Mishra, S. (2004). Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting, 20 (4), 629 - 645. DOI : http://dx.doi.org/10.1016/j.ijforecast.2003.10.003
Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH(1,1) ? Journal of Applied Econometrics, 20 (7), 873 - 889. DOI : http://dx.doi.org/10.1002/jae.800
Holton, G. (2003). Value-at-risk (1st ed.). Amsterdam: Academic Press.
Huang, A. Y. (2015). Value at risk estimation by threshold stochastic volatility model. Applied Economics, 47(45), 4884 - 4900. DOI : http://dx.doi.org/10.1080/00036846.2015.1037439
Hull, J., & White, A. (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. The Journal of Risk, 1(1), 5-19. DOI : http://dx.doi.org/10.21314/jor.1998.001
Javed, F., & Mantalos, P. (2013). GARCH-type models and performance of information criteria. Communications in Statistics - Simulation and Computation, 42 (8), 1917-1933.
Jorion, P. (2001). Financial risk manager handbook 2001-2002 (1st ed.). New York : John Wiley & Sons.
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3 (2), 73 - 84. DOI : http://dx.doi.org/10.3905/jod.1995.407942
Linsmeier, T. J., & Pearson, N. D. (1996). Risk measurement : An introduction to value at risk. Working Paper, 6153(July), 1 - 44. Retrieved from http://www.casact.net/education/specsem/99frmgt/pearson2.pdf
Lopez, J. A. (1998). Methods for evaluating value-at-risk estimates. DOI : http://dx.doi.org/10.2139/ssrn.1029673
Malhotra, R. (2014). Analysis of pure weather portfolios using parametric, non-parametric, and conditional VaR in relation to bank's risk capital. Indian Journal of Finance, 8(5), 19 - 26. doi: http://dx.doi.org/10.17010/ijf/2014/v8i5/71915
Mancini, L., & Trojani, F. (2011). Robust value at risk prediction. Journal of Financial Econometrics, 9 (2), 281 - 313. DOI : http://dx.doi.org/10.1093/jjfinec/nbq035
Nath, G., & Reddy, Y. (2003). Value at risk: Issues and implementation in Forex market in India. DOI : http://dx.doi.org/10.2139/ssrn.474141
ÑÃguez, T. (2008). Volatility and VaR forecasting in the Madrid Stock Exchange. Spanish Economic Review, 10 (3), 169-196. DOI : http://dx.doi.org/10.1007/s10108-007-9030-6
Nozari, M., Raei, S. M., Jahangiri, P., & Bahramgiri, M. (2010). A comparison of heavy-tailed VaR estimates and filtered historical simulation : Evidence from emerging markets. International Review of Business Research Papers, 6 (4), 347 - 359.
Polanski, A., & Stoja, E. (2009). Incorporating higher moments into value-at-risk forecasting. Journal of Forecasting, 29 (6), 523 - 535. DOI : http://dx.doi.org/10.1002/for.1155
Sarma, M., Thomas, S., & Shah, A. (2003). Selection of value-at-risk models. Journal of Forecasting, 22 (4), 337- 358. DOI : http://dx.doi.org/10.1002/for.868
Tripathi, V., & Gupta, S. (2008). Estimating the accuracy of value-at-risk (VAR) in measuring risk in equity investment in India. ICFAI Journal of Applied Finance, 14(7), 15 - 40.