Comparison of VaR Methods : The Case of Indian Equities

Authors

  •   Prateek Bedi Research Scholar, Department of Financial Studies, Arts Faculty Building, Benito Juarez Marg, University of Delhi, Delhi - 110 021
  •   Devesh Shankar Research Scholar, Faculty of Management Studies, University of Delhi, Delhi - 110 007
  •   Shalini Agnihotri Research Scholar, Faculty of Management Studies, University of Delhi, Delhi - 110 007
  •   Jappanjyot Kaur Kalra Research Scholar, Faculty of Management Studies, University of Delhi, Delhi - 110 007

DOI:

https://doi.org/10.17010/ijf/2018/v12i1/120739

Keywords:

Backtesting

, Historical Var, Kupiec's POF Test, GARCH (1, 1) VaR, Volatility Weighted Historical Simulation VaR, Normal VaR, Value At Risk

C52

, C53, C14, C15, G32

Paper Submission Date

, February 28, 2017, Paper sent back for Revision, November 4, Paper Acceptance Date, December 15, 2017.

Abstract

Different approaches to calculate VaR are based on different assumptions. This study dealt with a comparative evaluation of four Value-at-Risk models namely, historical VaR, normal VaR, GARCH (1,1) VaR, and volatility weighted historical simulation (VWHS) VaR in terms of their prediction accuracy for an active portfolio of Indian equities. Daily NAVs of 34 Indian equity growth mutual fund schemes for a period of 10 years were used to calculate 95% VaR and backtest the results using Kupiec's POF test for all four VaR models. To identify the better performing VaR methods accurately, the analysis was performed in two phases : pre-crisis analysis and post crisis analysis. We concluded that there was a significant (insignificant) difference in performance of different VaR models if market conditions during VaR calculation and VaR backtesting periods were in contrast (congruence) to each other. The study found VWHS to be a better methodology for measuring VaR of an active portfolio of Indian equity stocks in both phases of the analysis. The results are relevant for traders & retail and institutional investors who hold stocks of Indian companies in their portfolio and need to calculate VaR as a measure of market risk for their positions.

Downloads

Download data is not yet available.

Downloads

Published

2018-01-01

How to Cite

Bedi, P., Shankar, D., Agnihotri, S., & Kalra, J. K. (2018). Comparison of VaR Methods : The Case of Indian Equities. Indian Journal of Finance, 12(1), 24–36. https://doi.org/10.17010/ijf/2018/v12i1/120739

Issue

Section

Articles

References

Abad, P., & Benito, S. (2013). A detailed comparison of value at risk estimates. Mathematics and Computers in Simulation, 94, 258 - 276. doi : http://dx.doi.org/10.1016/j.matcom.2012.05.011

Abad, P., Benito, S., & López, C. (2014). A comprehensive review of value at risk methodologies. The Spanish Review of Financial Economics, 12(1), 15 - 32. DOI : http://dx.doi.org/10.1016/j.srfe.2013.06.001

Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4), 885 - 905. DOI: http://dx.doi.org/10.2307/2527343

Bali, T. G., Mo, H., & Tang, Y. (2008). The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR. Journal of Banking & Finance, 32(2), 269-282. DOI: http://dx.doi.org/10.1016/j.jbankfin.2007.03.009

Bao, Y., Lee, T., & Saltoglu, B. (2006). Evaluating predictive performance of value-at-risk models in emerging markets: A reality check. Journal of Forecasting, 25(2), 101-128. DOI: http://dx.doi.org/10.1002/for.977

Bhat, A. P. (2015). A test of alternative value-at-risk models during volatile periods. Indian Journal of Finance, 9 (8), 19 - 33. doi : http://dx.doi.org/10.17010/ijf/2015/v9i8/74560

Brooks, C., & Persand, G. (2002). Model choice and value-at-risk performance. Financial Analysts Journal, 58 (5), 87-97. DOI : http://dx.doi.org/10.2469/faj.v58.n5.2471

Campbell, S. D. (2007). A review of backtesting and backtesting procedures. Journal of Risk, 9 (2), 1-17. DOI : http://dx.doi.org/10.21314/jor.2007.146

Chou, H., & Wang, D. K. (2013). Estimation of tail-related value-at-risk measures: Range-based extreme value approach. Quantitative Finance, 14(2), 293-304. DOI : http://dx.doi.org/10.1080/14697688.2013.819113

Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39 (4), 841- 862. DOI : http://dx.doi.org/10.2307/2527341

Christoffersen, P. F., & Diebold, F. X. (2000). How relevant is volatility forecasting for financial risk management ? Review of Economics and Statistics, 82 (1), 12-22. DOI : http://dx.doi.org/10.1162/003465300558597

Christoffersen, P., & Pelletier, D. (2004). Backtesting value-at-risk: A duration-based approach. Journal of Financial Econometrics, 2(1), 84 - 108. DOI : http://dx.doi.org/10.1093/jjfinec/nbh004

Consigli, G. (2002). Tail estimation and mean - VaR portfolio selection in markets subject to financial instability. Journal of Banking & Finance, 26 (7), 1355 - 1382. DOI : http://dx.doi.org/10.1016/s0378-4266(02)00267-4

Dan..elsson, J. (2002). The emperor has no clothes: Limits to risk modelling. Journal of Banking & Finance, 26 (7), 1273-1296. DOI : http://dx.doi.org/10.1016/s0378-4266(02)00263-7

Dani.elsson, J. (2011). Financial risk forecasting (1st ed.). Chichester : John Wiley.

Danielsson, J., & De Vries, C. (2000). Value-at-risk and extreme returns. Annales D'Economie Et De Statistique, 60, 239 - 270. doi:10.2307/20076262

Das, A., Basu, P. N., & Ghoshal, T. K. (2009). Stochastic volatility model for Indian security indices: VaR estimation and backtesting. Indian Journal of Finance, 3 (9), 43 - 47.

Dowd, K. (2006). Measuring market risk (1st ed.). Chichester : John Wiley & Sons.

Ergen, I. (2014). Two-step methods in VaR prediction and the importance of fat tails. Quantitative Finance, 15(6), 1013 - 1030. DOI : http://dx.doi.org/10.1080/14697688.2014.942230

Ergun, A. T., & Jun, J. (2010). Time-varying higher-order conditional moments and forecasting intraday VaR and expected shortfall. The Quarterly Review of Economics and Finance, 50 (3), 264 - 272. DOI : http://dx.doi.org/10.1016/j.qref.2010.03.003

Gencay, R., & Selcuk, F. (2004). Extreme value theory and value-at-risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287-303. DOI : http://dx.doi.org/10.1016/j.ijforecast.2003.09.005

Giannopoulos, K., & Tunaru, R. (2005). Coherent risk measures under filtered historical simulation. Journal of Banking & Finance, 29 (4), 979 - 996. DOI : http://dx.doi.org/10.1016/j.jbankfin.2004.08.009

Gonzalez-Rivera, G., Lee, T., & Mishra, S. (2004). Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting, 20 (4), 629 - 645. DOI : http://dx.doi.org/10.1016/j.ijforecast.2003.10.003

Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH(1,1) ? Journal of Applied Econometrics, 20 (7), 873 - 889. DOI : http://dx.doi.org/10.1002/jae.800

Holton, G. (2003). Value-at-risk (1st ed.). Amsterdam: Academic Press.

Huang, A. Y. (2015). Value at risk estimation by threshold stochastic volatility model. Applied Economics, 47(45), 4884 - 4900. DOI : http://dx.doi.org/10.1080/00036846.2015.1037439

Hull, J., & White, A. (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. The Journal of Risk, 1(1), 5-19. DOI : http://dx.doi.org/10.21314/jor.1998.001

Javed, F., & Mantalos, P. (2013). GARCH-type models and performance of information criteria. Communications in Statistics - Simulation and Computation, 42 (8), 1917-1933.

Jorion, P. (2001). Financial risk manager handbook 2001-2002 (1st ed.). New York : John Wiley & Sons.

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3 (2), 73 - 84. DOI : http://dx.doi.org/10.3905/jod.1995.407942

Linsmeier, T. J., & Pearson, N. D. (1996). Risk measurement : An introduction to value at risk. Working Paper, 6153(July), 1 - 44. Retrieved from http://www.casact.net/education/specsem/99frmgt/pearson2.pdf

Lopez, J. A. (1998). Methods for evaluating value-at-risk estimates. DOI : http://dx.doi.org/10.2139/ssrn.1029673

Malhotra, R. (2014). Analysis of pure weather portfolios using parametric, non-parametric, and conditional VaR in relation to bank's risk capital. Indian Journal of Finance, 8(5), 19 - 26. doi: http://dx.doi.org/10.17010/ijf/2014/v8i5/71915

Mancini, L., & Trojani, F. (2011). Robust value at risk prediction. Journal of Financial Econometrics, 9 (2), 281 - 313. DOI : http://dx.doi.org/10.1093/jjfinec/nbq035

Nath, G., & Reddy, Y. (2003). Value at risk: Issues and implementation in Forex market in India. DOI : http://dx.doi.org/10.2139/ssrn.474141

Ñíguez, T. (2008). Volatility and VaR forecasting in the Madrid Stock Exchange. Spanish Economic Review, 10 (3), 169-196. DOI : http://dx.doi.org/10.1007/s10108-007-9030-6

Nozari, M., Raei, S. M., Jahangiri, P., & Bahramgiri, M. (2010). A comparison of heavy-tailed VaR estimates and filtered historical simulation : Evidence from emerging markets. International Review of Business Research Papers, 6 (4), 347 - 359.

Polanski, A., & Stoja, E. (2009). Incorporating higher moments into value-at-risk forecasting. Journal of Forecasting, 29 (6), 523 - 535. DOI : http://dx.doi.org/10.1002/for.1155

Sarma, M., Thomas, S., & Shah, A. (2003). Selection of value-at-risk models. Journal of Forecasting, 22 (4), 337- 358. DOI : http://dx.doi.org/10.1002/for.868

Tripathi, V., & Gupta, S. (2008). Estimating the accuracy of value-at-risk (VAR) in measuring risk in equity investment in India. ICFAI Journal of Applied Finance, 14(7), 15 - 40.