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INTRODUCTION

The investment is an art of science. If the resources and benefits taken in the form of money, investment is the present
commitment of money for the purpose of making money in the future. Investment science is the application of
scientific tools to investments. The scientific tools primarily used vary from simple to a higher level of mathematics.
The art to investment is knowing what to analyze and how to go about it. The analysis involves examining alternatives
and deciding which alternative is the most preferable. The analysis looks similar to other decision problems in
practice, but it differs to it with respect to the fact that most investments are carried out within the framework of the
financial market and these markets provide alternatives not found in other decision situations and hence, investment
analysis is unique and unusually a powerful methodology. The investment in stock market involves risk as the market
return is very uncertain. In order to capture this uncertainty, one needs to employ sophisticated mathematical models.
India is considered to be an emerging economic powerhouse in the global market. The Indian market also exhibits ups
and downs, which is unprecedented due to global recession. The rapid pace change and volatility that have buffeted the
global economy over the past few months had an impact on the Indian economy too. Even then, the investors looked at
the Indian Stock market with great hope and optimism. An investor is very much concerned about the return he makes
from the purchase of an asset. The performance of the stock market and stock price changes over time is not only a
common concern of an institutional investor, but for each individual. In India, the price indices such as SENSEX and
NIFTY give good measure of price movements over time. But in any financial market, whether it is a stock price or
commodity price or exchange rate, it behaves in a particular fashion. Many empirical studies revealed that the
financial market exhibits common features such as Fat tails; Asymmetry; Aggregate normality; Absence of serial
correlation; Volatility clustering; Time varying cross-correlation and these features commonly known as stylized
facts. One of the fundamental concerns about the stock market is the market volatility. Volatility of an asset in simple
terms can be defined as the standard deviation of the asset return. Economists believe that volatility can be explained
by efficient market hypotheses. In this paper, we are concerned with studying efficient market model for volatility that
captures the Indian stock market behaviour.

Our idea is to model the statistical volatility rather than implied volatility. The statistical volatility depends on the
choice of the statistical model that is applied to historical asset return data. The statistical model is usually a time series
model. Applying the model to the historical data will generate the statistical estimates of volatility for the past where
the historical data are available. It will also generate the forecasts of the volatility from now until some future point in
time called the risk horizon. Unlike prices, the volatility is not directly observable in the market. They can only be
estimated. Therefore, it is very important that a statistical volatility model provides more accurate estimate or forecast.
Moreover, volatility forecasting is crucial for option pricing, risk management and portfolio management. The
researcher has organized the paper in the following manner. In section 2, the researcher discusses various types of
models to estimate the volatility in the financial market. In section 3, the researcher focuses on the applicability of such
models in Indian context and section 4 covers the conclusion.

MODELING VOLATILITY

The volatility model can be of either a constant or time varying one. Constant volatility model usually refers to the
unconditional volatility of the return process. It is a finite constant which is the same throughout the data generating
process and can be calculated as the standard deviation of the unconditional distribution of the return process. An
unconditional volatility is only defined if we assume that the return series is generated from a stationary stochastic
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process. But this is is not a reasonable assumption that is commonly encountered in the financial market. On the other
hand, the time varying model describes a process for the conditional volatility. A conditional distribution, in this
context, is a distribution that governs a relation at a particular instant in time and the conditional volatility at the time is
the square root of the variance of the conditional distribution at time t. Moreover, a conditional forecast is considered
to be superior to an unconditional forecast. Both conditional mean and variance could change at every time period
throughout the process, but for the purpose of estimating and forecasting the conditional volatility, the conditional
mean is often assumed to be constant. In the following sections, the researcher addresses the question of how to model
the conditional volatility.

ARCHAND GARCHTYPEMODELS

In conventional econometric models, the variance of the disturbance term is assumed to be constant. However, many
econometric time series do not have a constant mean and most exhibit the phases of relative tranquility followed by
periods of high volatility. In such circumstances, the assumption of homoscedasticity (constant variance) is
inappropriate. Moreover, the returns in many financial markets are not well modeled by an independent and
identically distributed process. Except at high frequency, the return might not show any sign of autocorrelation, but
quite often, a strong autocorrelation can be seen in squared returns. A positive autocorrelation in squared return
indicates that financial market volatility comes in clusters, where tranquility periods of small returns are interspersed
with volatile periods of large returns. ARCH(Auto Regressive Conditional Heteroscedastic) model was first
introduced in literature by Engle[3] and later extensively studied by many researchers (cf. Bollerslev[1], Bollerslev,
Engle and Nelson[2], Higgins and Bera[4]. In ARCH model, one would model the conditional variance of the asset
return through maximum likelihood procedure. A general form of an ARCH(m) model is as follows:
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where 7, is the return of the series; &, is the disturbance term; c”, is the conditional volatility; w, is the i.i.d white noise
with mean 0 and variance 1. The conditions imposed on the parameters o, ensure that the volatility is non-negative.
Because of the volatility persistence in the financial market, it is found in practice that typically the order m is very
large. The impact of large order is essentially responsible for high computational effort. To over come this difficulty,
later, more advanced models such as GARCH (Generalized Auto Regressive Conditional Hetroscedastic) have been
studied by Bollerslev[1]. This model incorporates additional dependencies of past values of 6°, in the equation (3). A
general form of GRACH (p,q) model for the conditional volatility is:
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The conditions imposed on the parameter ensure that volatility is strictly positive. In practice, a GARCH(1,1) model
performs better than a larger order ARCH model and many practitioners still favor a GARCH modeling for the
volatility estimation. Because of this popularity, many variants of GARCH models also have been studied in literature
(cf. Nelson [7]). The predictive power of the model depends on how accurate one could estimate o,. The practice of
choosing daily squared return as a proxy for conditional variance gives a wrong signal for model selection. In time
series volatility modeling, (as is described above) is capable of forecasting the volatility based on the past
observations, but they are not able to predict the shocks that are new to the system. Once the shocks enter the system,
the merits of a model depend on how well it can capture the so-called stylized facts of the financial market. GARCH
models could capture many characteristics of the stylized facts, but not completely. However, GARCH models cannot
capture the leverage effect that is asymmetric in nature as they are basically symmetrical in nature. Another drawback
of the GARCH modeling is that the conditional variance formulation of 6°, gives too much weight to the error caused
by the shocks. To overcome this problem, a rescaling of the volatility can be employed through a logarithmic
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transformation. These thoughts lead to the development of more advanced GARCH models such as Exponential
GARCH (EGARCH) (cf. Nelson [7]), Threshold Garch (TGARCH) (cf. Glosten, Jaganathan and Rukle [5],
Zakonian[8]) in literature. The EGARCH (p,q) model has the representation:
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and TGARCH(p,q) model has the form: ) .
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APPLICATIONS OF MODELS IN THE INDIAN MARKET

In this section, the researcher investigates the applicability of the models in the Indian market. Most of these models
have been widely used in developed markets, only few works have attempted to study application of these models in
the Indian context. One such study is the work of Kumar [6]. Kumar studied basic models and GARCH model and the
study indicates that GARCH model performs better than the basic models. As discussed in the previous section, the
simple variance of the past return gives a measure of the volatility, but it will not give the correct market volatility.
There are other basic models such as Extreme-value estimators, Exponential Weighted Moving Average(EWMA)
discussed in literature, but the researcher mainly concentrates on the GARCH-type models discussed here. Another
reason to start with GARCH model for the discussion is that it is widely considered as practitioners model. The
researchers took SENSEX as a proxy for the stock market and collected the daily data from BSE site for a period
ranging from July 1,1996 to July 3,2009. It is plotted in the Figure 1 and the log return of the data is also plotted in the
Figure 2. The researchers considered only equity market and the models can be applied in other markets as well.

Figure 1: Sensex Data

Daily Sensex index from July 1, 1997 to July 3. 2009

4
ar
NN [y
AT
ir "
g T
. ~
=3 . AT A
g b b e A
I1 9‘8‘ iBBéI I2006 ‘ ‘200‘1 éooi ‘ ‘200‘3 ‘ 2‘004 2‘00; I 2‘006I ‘ iOU; ‘ 5008I ‘ ‘ZUOE‘) ”

Time

Figure 2 : Log Return Of The Data
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Summary statistics of the data is presented in Table 1. It indicates that the average daily return is 0.04% and the
standard deviation of the return series is /.8%. The coefficient of skewness is negative and it indicates negative
asymmetry. The coefficient of kurtosis is positive and is significantly higher and more than 3. It indicates that return is
leptokurtic compared to normal distribution.

Table 1: Summary Statistics

Minimum 1Quartile Median 3Quartile Max Mean Std Skewness Kurtosis
-0.118 -0.0089 0.001164 0.01025 0.1599 0.00041 0.018 -0.09165 8.017

Test for normality and autocorrelation is presented in Table 2.
Table 2: Test for Normality and Autocorrelation

Test for Normality: Jarque-Bera Test for Autocorrelation:-Ljung-Box

Null Hypothesis: Data is normal Null Hypothesis: No Autocorrelation

Statistics | P-Value | Distribution | DF | Statistics | PValue | Distribution. | DF
3113.06 | 0.0000 Chi-Sq 2 51.7126 0.0000 Chi-Sq 10

Jarque-Bera test for normality comes out with P-value as 0 with the null hypothesis as "refurn series is normal”. Since
the P-value is zero less than 5% level, we simply reject the null hypothesis that return series is normal. This in fact
justified by the Q-Q plot (see Figure 3), which shows that data deviates from the normal line. The Ljung-Box test for
autocorrelation comes out with P-value as zero suggest that the null hypothesis that "no auto-correlation" can be
rejected. This is further supported with the ACF analysis. Even though the ACF of the return series shows mild
autocorrelation, the ACF of squared returns exhibit significant auto correlation. Since the squared return exhibits
second order moment of the original return, the result shows that variance of the data conditional on its past history
might change overtime. In other words, the return data signals the conditional heteroscedasticity feature. The
augmented Dicky-fuller Test(ADF) with null hypothesis as "there is a unit root" came out with a p-value of 7 suggests
that the we cannot reject the null hypothesis and presence of unit root is ruled out indicating that the log return series

are stationary. Figure 3: Q-Q Plot
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Figure 4: ACF of the return
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Figure 5: ACF of Square Return
ACF of the Squared return
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ESTIMATION USING GARCH, EGARCHAND TGARCHMODELS

In order to estimate the volatility using the GARCH type models, we follow the following steps:

1. First we make sure that there is an ARCH effect in the return series.

2. Ifthereis an arch effect, we would use the GARCH /EGARCH /TGARCH model for modeling the volatility.

3. We perform aresidual analysis to check the model fitted the data well.

Step 1 is achieved by first applying an AR(p) model to the data set and then obtain the square of the fitted error, &’, .
Subsequently, we model the squared error in terms of q lagged variables and apply a regression. Then we employ a
simple Lagrangian Test for the NH: the regression coefficients, a, = 0, =1......q with the LM statistics as,
LM =TR ~y,’ where Tis the sample size and R’, the R-square of the regression. The testresult is presented in Table 3.
Since the P-value of the test is zero, we conclude that we can reject the hypothesis that there is no arch effect.

Table 3: Test for Arch Effects

Test for Arch Effects: LM Test
Null Hypothesis: No Arch Effect
Statistics | P-Value | Distribution | DF
277.555 0.0000 Ch-Square 20

Table 4: Estimated Results

Model Coeffs. Value Stan.Error t-value Prob. AIC BIC
i 0.1442 0.023107 6.238 5.048e-10
Garch(1,1) o, 0.0807 0.010577 7.629 3.153e-14 11151.71 | 11175.69
a, 0.1353 0.009420 14.363 | 0.000e+00
B, 0.8453 0.009745 86.745 0.000e+00
i 0.1398 0.020462 6.832 1.015e-11
EGarch(1,1) o, -0.1664 0.009104 -18.275 0.000e+00 11163.3 11187.28
a, 0.2599 0.013314 19.521 | 0.000e+00
B, 0.9662 0.004284 225.517 | 0.000e+00
u 0.09674 0.024489 3.950 7.987e-05
ol 0.10239 0.011654 8.785 0.000e+00
TGarch(1,1) o, 0.06524 0.008523 7.655 2.598e-14 | 11107.56 | 11137.53
B, 0.83554 0.011056 75.574 0.000e+00
Y 0.13814 0.015172 9.105 0.000e+00
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Since the test result in Step 1 is positive, we perform Step 2. For simplicity and comparison purpose, we setp =g = 1.
We employed a GARCH(1,1) model to fit the data. Subsequently, we employed EGARCH(1,1) and TAGARCH(I 1)

models. The estimation results are given in Table 4 and it shows that all the coefficients are significant.
In order to assess the performance of the model fit, we perform a residual analysis by taking the standard residual 5~

Ifthe model is successful at modeling the serial correlation structure in the conditional mean and conditional Varlance

then there should be no autocorrelation left in the standard residuals and squared standard residuals. The test results are
given in Table 5. In all the cases, p-values are greater than 5% and we conclude that the hypothesis that "no
autocorrelation" cannot be rejected.

Table 5: Residual Analysis

Residual Analysis: Test for Autocorrelation:-Ljung-Box
Models Standardized Residual Squared Standard Residual
Null Hypothesis: No Autocorrelation | Null Hypothesis: No Autocorrelation
Stat P-Value Dist. DF Stat P-Value Dist. DF
GARCH 62.26 8.70e-9 | Chi-Sq 12 8.599 0.7368 Chi-Sq | 12
EGARCH 62.81 6.89e-9 | Chi-Sq 12 10.33 0.5867 Chi-Sq | 12
TGARCH 65.67 2.05e-9 | Chi-Sq 12 6.047 0.9137 Chi-Sq | 12

Since Garch model basically assumes that error €, follows a normal distribution and the model is developed mainly to
capture the arch effect. Therefore another way of testing the model fit is to check the arch effect of the standardized
residual and normality of it. Ifthere is no arch effect then we could conclude that model could capture the arch effects
and if there is non-normality then we could conclude that the model is correctly specified. The test results are supplied
in Table 6. It indicates that all the models could capture the arch effect of the data but standardized residual does not
behave like a standardized normal random variable.

Table 6: Residual Analysis for Arch Effect and Normality

Residual Analysis: Test for Arch Effect and Test for Normality
Models Test for Arch Effect Test for Normality
Null Hypothesis: No Arch Effect Null Hypothesis: Residual is Normal
Stat P-Value Dist. DF Stat P-Value Dist. DF
GARCH 8.329 0.7589 | Chi-Sq 12 790.6 0.000 Chi-Sq | 2
EGARCH 9.678 0.6442 | Chi-Sq 12 762.5 0.000 Chi-Sq 2
TGARCH 6.015 0.9153 | Chi-Sq 12 1003 0.000 Chi-Sq | 2

Figure 6: Estimated Volatility
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Figure 6 (Contd.): Estimated Volatility
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The estimated volatility is shown in Figure 6. The best model among GARCH, EGARCH and TGARCH based on AIC
and BICcriterionis TGARCH as it is lowest among all these models.

CONCLUSION

The researcher discussed different mathematical models for modeling volatility in the stock market and application of
these models in the Indian context. Our study indicates that GARCH type models could capture the irregular
behaviour of the market data and among GARCH models, TGARCH model is more suitable for estimating the
volatility in the Indian stock market, especially in the SENSEX market.
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