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tock market forecasting is an exercise to determine the future value of its performance index, that is, SSENSEX, NIFTY. The successful prediction of any market's future index or a stock's future price will be 
more useful to the investing community to design optimal trading strategies that could yield significant 

profits. So, in the recent past, the concept of forecasting the stock market and its returns gained a lot of attention of 
the researchers. It may be because of the fact that if the directions of change in the market movements are 
successfully predicted, the investors may be better guided. Sometimes, the forecasted trends of the market will 
help the policy makers and regulators of the stock market in making curative decisions. The profit making 
investments and day to day operations in the capital market depend heavily on the forecasting ability.

Many practicing investors like Warren Buffett and other market researchers have proposed several models 
using various analytical methods, that is, fundamental analysis, technical analysis, and analytical techniques, etc. 
to give more or less exact forecasting. In addition to the above methods of forecasting, some traditional time series 
models were also used for it. Mainly, there are two kinds of time series models for forecasting, that is, linear 
models and non - linear models. Some of the examples of linear models are moving average, exponential 
smoothing, time series regression, etc. One among the most common and popular linear models is the 
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Abstract

The stock market is basically volatile, and the prediction of its movement will be more useful to the stock traders to design their 
trading strategies. An intelligent forecasting will certainly abet to yield significant profits. Many important models have been 
proposed in the economics and finance literature for improving the prediction accuracy, and this task has been carried out 
through  modelling based on time - series analysis. The main aim of this paper was to check the stationarity in time series data 
and predicting the direction of change in stock market index using the stochastic time series ARIMA modelling. The best fit 
ARIMA (0,1,0) model was chosen for forecasting the values of time series, that is,  and  by considering BSE_CLOSE NSE_CLOSE
the smallest values of AIC, BIC, RMSE, MAE, MAPE, standard error of regression, and the relatively high adjusted  values.  2

R
Using this best fitted model, the predictions were made for the period ranging from January 7, 2018 to June 3, 2018 (22 expected 
values) using the weekly data ranging from January 6, 2014 to December 31, 2017 (187 observed values). The results obtained 
from the study confirmed the prospectives of ARIMA model to forecast the future time series in short-run and would assist the 
investing community in making profitable investment decisions.
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autoregressive integrated moving average (ARIMA) model proposed by Box and Jenkins (1976). In this paper, a 
modest attempt has been made to select the best fitted ARIMA model from different stochastic models that 
satisfies all the criteria of goodness of fit statistics for making the predictions and also to forecast the future values 
of stock market indices.  
  
Review of Literature

It is pertinent to review the accessible literature connected to time series modeling and forecasting using ARIMA 
model. Most of the literature is focused on the identification of suitable ARIMA time series model and forecasting 
the gold price, exchange rates, oil palm prices, inflation rates, electricity consumption, etc. Only few studies are 
available relating to the forecasting of stock prices and stock market indices. Hence, this paper has been mainly 
devoted to the studies related to the determination of best ARIMA time series model and forecasting of future 
stock prices and stock market indices. 

Meyler, Kenny, and Quinn (1998) developed the ARIMA time series predicting model for predicting the 
inflation in Ireland. In their study, they focused on maximizing the power of forecasting by minimizing forecast 
errors. Contreras, Espinola, Nogales, and Conejo (2003) examined the trends in daily prices of electricity in spot 
and forward contracts for mainland Spain and Californian markets and provided the best - suited ARIMA method 
to predict the next day electricity prices.

Nochai and Tidia (2006) conducted a study with an objective to find an appropriate ARIMA model for 
forecasting three types of oil palm prices by considering the minimum mean absolute percentage error. The 
empirical analysis of the study showed that ARIMA (2,1,0), (1,0,1), and (3,0,0) are the best models for forecasting 
the farm prices of oil palm, wholesale price of oil palm, and pure oil price of oil palm, respectively.

 In a study conducted by Jarrett and Kyper (2011) using the data developed by Pacific - Basin Capital Markets 
(PACAP) and the SINOFIN Information Services Inc. demonstrated the usefulness of ARIMA - intervention time 
series analysis as both an analytical and forecast tool. The study indicated the usefulness of the developed model in 
explaining the rapid decline in the values of the price index of Shanghai market during the world economic decline 
in China in 2008. The authors concluded that the daily stock price index contained an autoregressive component; 
hence, it was better to forecast the stock returns using ARIMA model.

Banerjee (2014) used the ARIMA model for predicting stock market indices and also highlighted that they 
have an undue influence on the progress of the Indian economy. The study dealt with the identification of the best 
fit ARIMA model and after that predicted the SENSEX using the justified model. 

Adebiyi and Adewumi (2014) presented the procedure for developing ARIMA models for forecasting share 
prices during the short-run. The results of the study explained the power of ARIMA models in predicting the stock 
prices in the short-run, which would help the investors in their decisions. A study was conducted by Jadhav, 
Kakade, Utpat, and Deshpande (2015) for forecasting the Indian share market using ARIMA model and said that 
artificial neural networks (ANNs) are universal approximates that can be applied to a wide range of time series for 
forecasting futuristic values in share market and give bright scope for investment. However, in their study, they 
proposed a novel hybrid model of ANN using ARIMA model instead of only artificial neural network for 
improving the predictive performance.

Guha and Bandyopadhyay (2016) examined the application of ARIMA time series model to forecast the future 
gold prices based on the past data from November 2003 to January 2014 to mitigate the risk in purchase of gold 
and, hence, to give guidelines for the investor when to buy or sell the yellow metal. The authors opined that 
nowadays, gold has gained importance as one of the investment alternatives  ; it has become necessary to predict 
the price of gold with an appropriate method.

Savadatti (2017) carried out a study to identify the best fitted ARIMA models for forecasting the area, 
production, and productivity of food grains for 5 years. Based on univariate time series analysis, the study 
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identified ARIMA (2,1,2), ARIMA (4,1,0), and ARIMA (3,1,3) models for forecasting the data on area, 
production, and productivity of food grains, respectively and these models were found to be adequate. The 
forecast values indicated that production and productivity increased during the forecast period but that of area 
exhibited near stagnancy, calling for timely measures to enhance the supply of food grains to meet the increasing 
demand in the future years.

Dikshita and Singh (2019) examined the different volatility estimators for forecasting volatility with high 
accuracy by traders, option practitioners, and various players of the stock market. The study evaluated the 
efficiency and bias of various volatility estimators based on various error measuring parameters, that is, ME, 
RMSE, MAE, MPE, MAPE, MASE, and ACFI. The study identified the Parkinson estimator as the most efficient 
volatility estimator. The study also suggested that the forecasted values were accurate based on the values of       
MAE and RMSE.

It may be concluded that many researchers have conducted studies to give reasons for the selection of ARIMA 
model for forecasting the time series data of a single variable with better accuracy. However, no researcher has 
focused on forecasting stock market indices in the Indian context. The present work is an effort to forecast the 
indices of BSE and NSE based on the past 187 weeks using the best fitted ARIMA model. 

Statement of the Problem

Due to them being dynamic and non - linear in nature, it is very tricky to predict the stock exchange movements 
precisely. However, it is necessary to forecast and uncover non - linearity of the stock market to enable individual 
and institutional investors to design appropriate trading strategies and to achieve better results out of their 
investment endeavors. Hence, stock market forecasting has become a significant theme and has motivated 
researchers to build improved forecasting models. There are quite a few methods of statistical forecasting, that is, 
regression analysis, classical decomposition method, Box and Jenkins and smoothing techniques, with different 
degrees of accuracy. The accuracy of a forecasting model is based on the minimum errors of forecasting, that is, 
root mean square error, mean absolute error, standard error of regression, adjusted -square, Akaike information R
criterion, Bayesian information criterion, etc. Among several methods of time series forecasting, the Box and 
Jenkins method is quite accurate compared to other methods and may be applicable to all types of data 
movements. This paper is an attempt to test the stationarity in the given time series and selecting the best suitable 
ARIMA model (also known as Box - Jenkins methodology) for short-term forecasting of BSE and NSE. The 
results obtained from the study can aid the investors in their investment decision - making process.     

Objectives of the Study

The objectives of the study are listed below :

(1) To test the stationarity of the time series data compiled for the study, that is, weekly closing index values of BSE 
(BSE_CLOSE) (NSE_CLOSE) and NSE .
(2) To choose the optimum ARIMA model for estimating the series.

(3)To forecast the indices of BSE and NSE using the selected time - series ARIMA model.

Research Methodology

(1) Research Design : Keeping in view of the above listed objectives of the study, an exploratory research design 
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and stochastic modeling has been adopted. Exploratory research is one which interprets the already available 
information and it lays particular emphasis on the analysis and interpretation of the available secondary data. 
Stochastic modeling is used for selecting the best ARIMA model and forecasting the time series using the                    
selected model.

(2) Sources of Data : The data required for the present study is secondary in nature and has been compiled from an 
online source, that is, yahoofinance.com. The weekly closing indices of BSE and NSE are obtained from the 
website for the period from June 6, 2014 to June 3, 2018 (209 observations). From this range of data, I have taken 
the sample data ranging from June 6, 2014 to December 31, 2017 (187 observations) for making predictions 
ranging from January 7, 2018 to June 3, 2018 (22 observations).

(3) Hypothesis : The null hypothesis is generally defined as the presence of a unit root and the alternative 
hypothesis is stationarity (or trend - stationary). 

  H  : δ = 1, there is unit root and the series (BSE_CLOSE and NSE_CLOSE) is non stationary.01

  H  : δ < 1, there is no unit root and the series (BSE_CLOSE and NSE_CLOSE) is stationary.a1

Analysis and Results

To select the best fitted ARIMA model, among several experiments conducted, many statistical tools are to be 
applied, that is, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error 
(MAPE), Akaike information criterion (AIC), Bayesian information criterion (BIC), etc. 

The RMSE has been used as a standard metric to measure the model performance in stock market forecasting. 
While applying the RMSE, the underlying assumption is that the errors are unbiased and follow a normal 
distribution. It provides a complete picture of the error distribution and its value should be relatively low                  
(Draxler, 2014). The RMSE can be calculated by using the following formula : 

Mean absolute error measures the average magnitude of the errors in a set of predictions without considering 
their directions. It is the average over the test sample of the absolute differences between prediction and actual 
observations where all individual differences have equal weight. Hence, its value should be low. The MAE 
coefficient is given by the following equation (Draxler, 2014) :

The mean absolute percentage error is a measure of prediction accuracy of a forecasting method. It usually 
expresses the forecasting accuracy of a model in percentage terms ; hence, its value should be maximum. The 
MAPE formula as stated by Tofallis (2015) is : 

Bayesian information criterion, also known as Schwarz information criterion (SIC), is a criterion for model 
selection among a finite set of models. It is based on the likelihood function, and it is closely related to Akaike 
information criterion (AIC). Mathematically, the BIC is an asymptotic result derived under the assumption that 

RMSE =   å 
n

i =1

2(x  - x )i i
nÖ

¾- .................(1)
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the data series is exponentially distributed. The BIC was developed by Schwarz (1978), who gave a Bayesian 
argument for adopting it.

where,  is residual sum of squares ;  is the number of coefficients estimated, that is, 1 + and  is rss k  p + q + P + Q ; n
the number of observations.

(1) Augmented Dickey - Fuller Unit Root Test : The initial phase of structuring the ARIMA model is to recognize 
whether the variable being predicted is stationary in time series or not. Most forecasting methods assume that a 
distribution has stationarity. A time series has stationarity if a shift in time does not cause a change in the shape of 
the distribution, that is, the mean and auto-covariance of the series do not depend on time (Tsay, 2005). Unit roots 
are one cause for non-stationarity. An absence of stationarity can cause unexpected behaviors in data series. Most 
real-life data sets just are non - stationary and we should make it stationary in order to get any useful predictions 
from it. Augmented Dickey - Fuller (ADF) unit root test examines whether a time series variable is non - stationary 
and possesses unit root. A common example of a non-stationary series is the random walk. We may write the 
random walk model (RWM) with stochastic process as (Garekos & Gramacy, 2013 ; Rao & Mukherjee, 1971) :

     Y  = δY  + u   (-1 ≤ δ ≤1)                                                         t t-1 t

where, 

t = time measured chronologically ; and
ut = white noise error term.

For theoretical reasons, we manipulate equation (5) by subtracting  from both the sides to obtain : Yt-1

Y  - Y =  Y  -  Y  +  uδt t - 1 t - 1 t - 1 t

Y   Y = δ  Y  +  u                 ...........t t - 1 t - 1 t - (  - 1) ........(6)

which can be written as :

∆Y  =  Y  + u                 ...........β ........(7)t  t - 1 t 

where, ( 1) and first difference operator. β = δ - ,  ∆ = 
In practice, instead of estimating equation (5), we estimate equation (7) and test the hypothesis (null) that               

β β δ= 0. If  = 0, then  = 1, that is, we have a unit root, meaning that the time series under consideration is                         
non - stationary. Before we proceed to estimate equation (7), it may be noted that if , equation (7) will   δ = 0
become :
 

∆Y  = Y  - Y   =  u  ( )               ....................(8)t  t t-1 t 

 
Since  is the white noise error term, it is stationary, which means that the first differences of a random walk time ut

series are stationary.
Before running the ADF test, one should inspect the data to figure out an appropriate regression model. We 

rss)( +     log n k
nBIC = log n .................(4)

.................(5)
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have three versions of the test :

Type 0     No Constant, No Trend    ∆Y  = β Y  + ut 1 t-1 t

Type 1     Constant, No Trend          ∆Y  = β  + β Y  + ut 0 1 t-1 t

Type 2     Constant, Trend               ∆Y  = β  + β Y  + β t + ut 0 1 t-1 2 t

The Augmented Dickey - Fuller adds lagged differences to the above models (Gujarati, 2004) :

Type 0      No Constant, No Trend a   ∆Y  = β Y  +     ∆Y + ut 1 t-1 i t - i t

Type 1     Constant, No Trend   a         ∆Y  = β  +β Y  +   ∆Y + ut 0 1 t-1 i t - i t

Type 2     Constant, Trend a               ∆Y  = β  + β Y  + β t +     ∆Y + ut 0 1 t-1 2 i t  - i t

where,   

ut = Error term; and
∆Yt - i = Lagged differences.

Number of lagged differences to be added in the model is often decided numerically so that the residuals are not 
serially correlated. Moreover, there are several options for choosing lags : Minimize Akaike's information 
criterion (AIC), or Bayesian information criterion (BIC), or drop lags until the last lag is statistically significant.

ADF test with intercept was applied on both series to test the data for stationarity. The null hypothesis is tested 
through - statistics, which is given by the following formula :t 

t =                                                                                         ................... (9)

If '  ' calculated is greater than the critical value, we do not reject the null hypothesis and the series under t
consideration would be non - stationary and has a unit root. On the other hand, if '  ' calculated is less than the t
critical value, we reject the null hypothesis and the series under consideration would be stationary and does not 
have the unit root. First, the series should be tested on level and if it does not become stationary, then we should test 
the series at the first and second difference sequentially. ' ' – value is also used to reject or accept the null p
hypothesis.  If the ' ' – value is less than 0.05 (  < 0.05), the null hypothesis is rejected and vice - versa.p p

The ADF Test (Table 1) at level depicts that the calculated '  ' – value is greater than the critical values at 1%, t
5%, and 10% levels of significance. At levels, both the underlying series (  and ) are          BSE_CLOSE NSE_CLOSE
non - stationary. The  - value of the series is also greater than 0.05. Hence, we do not reject the null hypothesis p
( ) and accept the alternative hypothesis ( ) that the series has a unit root. When the series ( ) is                              H H Y01 a1 t

non - stationary, it must be differenced  ' ' times before it becomes stationary, then it is said to be integrated of d 
order '  ' (Brooks, 2008). The results of ADF test at first difference are presented in the Table 2. d

The ADF test (Table 2) at first difference reveals that both the series are stationary at first difference. The 
calculated value of  is -13.97590, which is less than the critical values at all levels of significance. DBSE_CLOSE
Similarly, the '  ' – statistics of  is -14.28255, which is also less than the critical values at all levels of t DNSE_CLOSE
significance. Therefore, the null hypothesis ( ) is rejected and it can be concluded that both the series are H01

å
m 

i =1

å
m 

i =1

å
m 

i =1

d - d H0

Ù

d
Ù

SE of
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Table 1. Augmented Dickey - Fuller Test at Level
H  is: BSE_CLOSE has a unit root.  H  is: NSE_CLOSE  has a unit root.0 0

Exogenous: Constant, Linear Trend  E xogenous: Constant, Linear Trend

Lag Length: 0 (Automatic-based on   L ag Length: 0 (Automatic-based on 
AIC, maxlag = 14)    AIC, maxlag = 14) 

  t-statistic Prob.*   t-statistic Prob.*

ADF test statistic  -1.603668 0.7886       ADF test statistic  -1.787570 0.7075

Test critical values 1% level  -4.002786   Test critical values     1% level  -4.002786 

 5%  level  -3.431576      5%  level  -3.431576 

 10% level  -3.139475      10% level  -3.139475 

*MacKinnon (1996) one-sided p - values.  * MacKinnon (1996) one-sided p - values.

Augmented Dickey - Fuller Test Equation  A ugmented Dickey - Fuller Test Equation

Dependent Variable: D(BSE_CLOSE)  D ependent Variable: D(NSE_CLOSE)

Method: Least Squares    Method: Least Squares

Date:06/22/18    Time:05:51  D ate:06/22/18    Time:07:28

Sample (adjusted): 6/15/2014     6/03/2018 S ample (adjusted): 6/08/2014     6/03/2018

Included Observations: 208 after adjustments I ncluded Observations: 209 after adjustments

Variable Coefficient Std. Err. t-stat Prob. Variable Coefficient Std. Err t-stat Prob.

BSE_CLOSE(-1) -0.028791 0.017953 -1.603 0.1103 NSE_CLOSE(-1) -0.032916 0.018414 -1.787 0.0753

C 713.4920 449.9443 1.585 0.1143 C 246.6873 137.8652 1.789 0.0750

@TREND  1.538760 0.901803 1.706 0.0895 @TREND  0.540804 0.300068 1.802 0.0730
("6/08/2014")     ("6/08/2014")

R-squared 0.015160 Mean   49.112 R-squared 0.017105 Mean   15.235
  dependent var     dependent var

Adj R-squared 0.005552 S.D.   520.18 Adj R-squared 0.007105 S.D.   158.44
  dependent var     dependent var

S.E. of regression 518.7404 AI Criterion  15.355 S.E. of regression 157.8433 AI Criterion  12.975

Sum squared resid 55163775 Schwarz criterion  15.403 Sum squared resid 5132391 Schwarz criterion  13.023

Log likelihood -1593.920 HQ Criterion  15.374 Log likelihood -1352.922 HQ Criterion  12.994

F-statistic 1.577813 Durbin-Watson   1.9243 F-statistic 1.792443 Durbin-Watson   1.9596
  Stat    Stat

Prob (F-statistic) 0.2018922   Prob (F-statistic) 0.169141  

Table 2. Augmented Dickey - Fuller Test at First Difference
H  is: DBSE_CLOSE has a unit root.  H  is: D(DNSE_CLOSE) has a unit root.0 0

Exogenous: Constant, Linear Trend  E xogenous: Constant, Linear Trend

Lag Length:2 (Automatic-based on AIC, maxlag=14) L ag Length:2 (Automatic-based on AIC, maxlag=14) 

  t-statistic Prob.*   t-statistic Prob.*

ADF test statistic  -9.75042 0.0000    ADF test statistic  -9.796126 0.0000

Test critical values 1% level  -4.002449    Test critical values 1% level  -4.003226 

 5%  level  -3.431896  5%  level  -3.431789 



10% level  -3.139664  10% level  -3.139601 

*MacKinnon (1996) one-sided p - values. * MacKinnon (1996) one-sided p-values.

Augmented Dickey - Fuller Test Equation  A ugmented Dickey - Fuller Test Equation

Dependent Variable: D(BSE_CLOSE)  D ependent Variable: D(NSE_CLOSE)

Method: Least Squares    Method: Least Squares

Date:06/22/18    Time:14:05   Date:06/22/18    Time:14:03

Sample (adjusted): 7/06/2014     6/03/2018 S ample (adjusted): 6/29/2014     6/03/2018

Included Observations: 205 after adjustments I ncluded Observations: 206 after adjustments

Variable Coeffi Std. Err. t-stat Prob. Variable Coeffi Std. Err t-stat Prob.

D(NSE_CLOSE(-1)) -1.1881 0.0179 -9.7504 0.000 D(NSE_CLOSE(-1)) -1.2034 0.1228 -9.7961 0.0000

D(NSE_CLOSE(-1),2) 0.2015 0.0972 2.0725 0.039 D(NSE_CLOSE(-1),2) 0.1979 0.0985 2.0080 0.0460

D(NSE_CLOSE(-2),2) 0.1285 0.0696 1.8452 0.066 D(NSE_CLOSE(-2),2) 0.1445 0.0698 2.0705 0.0397

C -12..4935 74.332 -0.1680 0.866 C -5.9844 22.739 0.2631 0.7927

@TREND  0.6378 0.6143 1.03829 0.300 @TREND  0.1204 0.1867 0.6450 0.5199
("6/08/2014")     ("6/01/2014")

R-squared 0.50384 Mean   -3.149 R-squared 0.51073 Mean   0.3597
  dependent var     dependent var

Adj R-squared 0.49391 S.D.   729.24 Adj R-squared 0.50099 S.D.                     225.165
   dependent var           dependent var

S.E. of regression 518.778 AI Criterion  15.364 S.E. of regression 159.057        AI Criterion  13.008

Sum squared resid 53426199 Schwarz criterion  15.445 Sum squared resid 5085154.     Schwarz criterion 13.081

Log likelihood -1569.904 HQ Criterion  15.397 Log likelihood -1334.039      HQ Criterion  13.033

F-statistic 50.77432 Durbin-Watson   1.9527 F-statistic 52.45409     Durbin-Watson 1.9890
  stat    stat

Prob (F-statistic) 0.0000   Prob (F-statistic) 0.000000  

Figure 1. Graphs of BSE_CLOSE and NSE_CLOSE Series at First Difference

DBSE_CLOSE DNSE_CLOSE
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c  p = 1
N å

N-p  
t =1

(Y  -Y )*(Y -Y )t t + p
--

stationary at 1%, 5%, and 10% levels of significance, and both the series do not have the unit root. An informal 
method to test the stationarity also confirms the results of the formal test, that is, the ADF test. Graphs of both the 
series at first difference do not demonstrate any kind of trend ; there are fluctuations in the graphs. These 
fluctuations epitomize the stationarity of the underlying series (shown in Figure 1).

(2) Correlogram Analysis : A correlogram (also called auto correlation function plot) is an image of correlation 
statistics and it gives a summary of correlation at different periods of time, that is, serial correlation. Serial 
correlation is where an error at one point in time travels to a subsequent point of time. It is a commonly used tool 
for checking the randomness in a data set. A correlogram contains the autocorrelation function (ACF) and partial 
autocorrelation function (PACF). Autocorrelation refers to the way the observations in a time series are related to 
other and is measured by a simple correlation between current observation (Y ) and the observation 'p' periods        t

(lag p) from the current one (Y ) (Abdullah, 2012 ; Brooks, 2008).  The autocorrelation coefficient at 'lag p' is t-p

given by : 
     
                  ................. (10)

where,  
cp = the auto - covariance function; and
c  0 = the variance function.

                  ................. (11) 

        ................. (12)

The resulting value of 'r ' will range between -1 and +1.p

Partial autocorrelations (PACF) are used to measure the degree of association between  and  when the Y Yt t-p

effect of other time lags 1, 2, 3, ……, 1) are removed. The Figure 2 represents the plot of correlogram (ACF and   (p -
PACF coefficients) of the time series  and  for lags 1 to 20 at the level (zero order BSE_CLOSE NSE_CLOSE
difference). We may infer from the correlogram that the ACF of  and  were dropped BSE_CLOSE NSE_CLOSE
away very gradually; thus, the data in time series is non - stationary. Hence, there is a need to convert                             
non - stationary series into stationary by differencing. 

The Figure 3 shows the spikes of correlogram, auto correlation, and partial auto correlation coefficients for the 
lags 1 to 20 at the first order difference of the time series, that is,  and .BSE_CLOSE NSE_CLOSE

The plots say that the first order difference of the data after transformation is random. If the model is fit, then the 
residuals of the model would contain the sequence of probable errors. Since spikes of ACFs and PACFs are 
insignificant, the residuals of the chosen ARIMA model are white noise, and hence, the time series data has 
become stationary. This is essentially a random walk process and there is no need to think about any other AR( ) p
and MA( ) models further. Hence, the transformed time series essentially follows an ARIMA (0,1,0) process. The q
random walk model in stock price and market index forecasting has been commonly used and studied throughout 
history (Fama, 1965). The random walk model has similar implications as the efficient market hypothesis, 
suggesting that one cannot outperform the market by analyzing historical prices of a certain stock or index of the 
overall market.    

r  p = 
cp

c0

t =1
å
N  - 2(Y  - Y )t

c  0 = 1
N

Indian Journal of Finance • August 2019    15



16    Indian Journal of Finance • August 2019 



(3) ARIMA Model for Forecasting :  The ARIMA model is the composition of a series of steps for discovering the 
best model, supposing and identifying the different (ARIMA) models using available data in time series, and 
forecasting the series using the best model. It is one of the well-known techniques for economic forecasting. 
ARIMA models are extremely capable to produce projections during short-term (Merh, Saxena, & Pardasani, 
2010). These are the best composite structural models useful for short-term forecasts (Pai & Lin, 2005). In 
ARIMA model, the expected value of any variable is a linear combination of past values and errors (Hanke & 
Wichern, 2005), expressed as follows : 

(i)  Auto Regressive Model [AR(p)] : YtAn AR model is one in which ‘ ’ depends only on its own past values, that is, 

Y , Y , Y , Y  = f Y , Y , Y  , …….., ε                    ........t-1 t-2 t-3 t t-1 t-2 t-3 t etc. Thus,  ( ) ........ (13)

A common representation of an autoregressive model where it depends on ' ' of its past values called AR( ) model p p
is represented below:

Y  = β  + β Y  + β Y  + β Y  + ...... + β Y ................. (14)t 0 1 t - 1 2 t - 2 3 t - 3 p t - p t                        + e

where   = affecting (dependent) variable at time .Y tt

Y  Y  ……, Y t  t  ….., t-p,t  -1 t  - 2 t - p, ,  = Response variable at time lags -1, -2,  respectively.
β , β , β , ……, β0 1 2 p = Coefficients to be estimated.
ε tt = Error term at time .

(ii) Moving Average Model [MA(q)] : A moving average model is one when Y  depends only on the random error t

terms which follow a white noise process, that is, 

Y  = f ε  ε  ε  ε  ……..  t t t - 1 t - 2 t - 3( , , , , )                ................. (15)
 
A common representation of a moving average model where it depends on ' ' of its past values is called MA( ) q q
model and is represented below :

Y  = β ε   ε  ε ε εt 0 t 1 t  - 1 2 t  - 2 3 t  - 3 q t  - q + + f + f + f   + ...... ..+ f              ................. (16)

The error terms  is assumed to be white noise processes with mean zero and variance σ .2εt

where , 
Y tt  = Response variable (dependent) variable at time ,
β ,0  = Constant mean of the process,
ɸ , ɸ , ɸ ,……, ɸ  = coefficients to be estimated,1 2 3 q

ε tt = Error term at time .
ε  ε , ε ε Yt - 1 t - 2 t - 3 ………. t - q t,  =  Errors in previous time periods that are incorporated in . 

(iii) Auto Regressive Moving Average (ARMA) Model : There are situations where the time series may be 
represented as a mix of both AR and MA models referred to as ARMA ( ). The general form of such a                p,q
time - series model, which depends on ' ' of its own past value and ' ' past values of white noise disturbances take p q
the form :
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Y  = β  + β Y  + β Y  + ...... + β Y  + ε + ε  + ...... ..+  εY             ....................(17) t 0 1 t - 1 2 t - 2 p t - p t 1 t  - 1 2 t  - 2 q t  - q    e  + f f  f

(iv) Selection of Appropriate ARIMA (p,d,q) Model : Model for non - seasonal series is called autoregressive 
integrated moving average model denoted by ARIMA ( ). Here ' ' is the order of autoregressive part, ' ' p,d,q p d 
indicates the order of differencing, and ' ' indicates the order of moving average part. In general, a series which is q
stationary after being differenced ' times' is said to be integrated of order ' , ' denoted by . If the original series d d  I(d)
is stationary, = 0 and the ARIMA models reduce to ARMA models. The time series data used for the present d 
study, that is,  and  have become stationary after the first order differencing. Since there BSE_CLOSE NSE_CLOSE
is no need for further differencing the series, it is necessary to adopt =1 (first difference) for ARIMA ( ) d  p, d ,q
model. To get the appropriate numbers for ' ' (in AR) and ' ' (in MA) in the model, we should check the p q
correlogram after first difference in time series (Figure 2). Since there are no significant spikes of ACF and PACF, 
the residuals of the selected ARIMA model are white noise and there is no need for further consideration of one 
more AR ( ) and MA ( ). To choose one best ARIMA model amongst the numerous combinations present, the p q
following criterions are used :

(a) Comparatively low of Akaike/Bayesian/Schwarz Information criterions (AIC/BIC/SIC).
(b) Comparatively low S.E. of Regression.
(c) Comparatively high adjusted  - square ). 2R (R
(d) Root mean square error (RMSE) should be relatively low.
(e) Mean absolute error (MAE) and mean absolute percentage error (MAPE) should be low.

     Table 3 and Table 4 provide the results of various parameters of AR( ) and MA( ) of the ARIMA model. Using p q  
these values, the best fit model for predicting the time series  and  are identified.DBSE_CLOSE DNSE_CLOSE

After checking the robustness of the statistics given in the Table 3 and Table 4, it is found that only ARIMA 
(0,1,0) model convinces all the norms (lowest AIC, BIC, RMSE, MAE, MAPE, standard error of regression, and 
the relatively high adjusted  values). Hence, this model is considered to be the best predictive model, which is 2R
used to forecast the future values of the time series, that is,  and . The prediction BSE_CLOSE NSE_CLOSE
equation for this model can be written as :

Table 3. Output for Various ARIMA Parameters for DBSE_CLOSE
2ARIMA RMSE MAE MAPE S.E. of Regression Log Likelihood Adjusted R  AIC BIC

(0,1,0) 518.9344 407.0126 135.6836 520.1864 -1595.509 0.00000 15.3510 15.36709

(1,1,0) 520.0480 408.1295 135.3038 522.5642 -1595.448 -0.00916 15.3696 15.41783

(1,1,1) 520.0340 408.1138 135.1785 523.6914 -1595.388 -0.01352 15.3787 15.44291

(2,1,0) 521.2446 409.8329 131.5123 521.2495 -1594.929 -0.00409 15.3647 15.41284

(2,1,1) 521.2519 409.8372 131.5177 522.4525 -1594.900 -0.00873 15.3740 15.43822

(1,1,2) 519.9580 408.0805 135.3919 522.4621 -1594.904 -0.00876 15.3740 15.43826

(2,1,2) 521.2424 409.8305 131.5162 522.5242 -1594.929 -0.00900 15.3743 15.43850

Note. The values in the first row represent the best ARIMA model among different combinations.

18    Indian Journal of Finance • August 2019 



Y  – Y  = Y  = Yt t-1 t t t-1 tµ  or equivalently  + µ                ................. (18)

…… where the constant term is the average period - to - period change (i.e., the long-term drift) in ' '. This Y 
model could be fitted as a no - intercept regression model in which the first difference of '  ' is the dependent Y
variable.

(4) Forecasting Using Selected ARIMA (p, d, q) Model : The present study is based on weekly data on the closing 
indices of BSE  and NSE ( ) covering the period from June 8, 2014 to June 3, 2018, (BSE_CLOSE) NSE_CLOSE
having a total number of 209 observations, of which the period from January 7, 2018 to June 3, 2018 having 22 
observations are used for forecasting length.  

(i) Results of ARIMA (0,1,0) Model for BSE_CLOSE Prediction :  The Table 5 exhibits the forecasting results of 
ARIMA (0,1,0) model, which is regarded as the best fit model for prediction of  index. The table BSE_CLOSE
shows the actual and predicted values of series for the forecast length (22 observations) ranging from January 7, 
2018 to June 3, 2018. It is observed from the summary of ARIMA forecasting model that the software has selected 
the log of dependent variable after first differencing, that is,  and the forecast length is 22 DLOG(BSE_CLOSE)
weeks. The software has estimated nine models and out of them, the best ARMA model selected is (0,0)(0,0). The 
value of Akaike information criterion of this model is observed to be very small than all other models tested. 

The Figure 4 is the graphical illustration and shows the level of accuracy of the selected ARIMA model, which 
exhibits the predicted performance of the BSE  against the actual performance during the (BSE_CLOSE)
forecasted period. The line of forecasting of  continues to rise during the forecasting period, that is, BSE_CLOSE
from January 7, 2018 to June 3, 2018. When compared to the forecasted performance, the actual performance of 
BSE_CLOSE during the period from  February 4, 2018 to March 18, 2018 is quite unsatisfactory. However, the 
market revived by the end of June 3, 2018.  

According to Table 6, ARIMA (0,1,0) is relatively the best model. The model returns the smallest Akaike 
information criterion of -5.06570, smallest Bayesian or Schwarz information criterion of -5.04836, and relatively 
smallest standard error of regression of 0.019169. It is also observed from the model selection criteria table              
(Table 7) that out of nine models verified, ARMA (0,0)(0,0) is found to be the best model as its LogL, AIC, BIC, 
and HQ coefficients are smaller than the remaining eight models.   

(ii) Results of ARIMA (0,1,0) Model for NSE_CLOSE Prediction :  The Table 8 contains the empirical results of 
ARIMA (0,1,0), which is regarded as the best fit model for prediction of  index. The Table shows the NSE_CLOSE

Table 4. Output for Various ARIMA Parameters for DNSE_CLOSE
2ARIMA RMSE MAE MAPE S.E. of Regression Log Likelihood Adjusted R  AIC BIC

(0,1,0) 158.0640 125.1574 195.6765 158.4436 -1354.725 0.00000 12.9734 12.9894

(1,1,0) 158.3947 125.4862 195.9553 159.2095 -1354.723 -0.00969 12.9925 13.0405

(1,1,1) 158.3945 125.4854 195.9649 159.5926 -1354.717 -0.01455 13.0028 13.0660

(2,1,0) 158.7299 125.8748 196.6628 158.9947 -1354.444 -0.00696 12.9898 13.0378

(2,1,1) 158.7298 125.8755 196.6935 159.3812 -1354.443 -0.01187 12.9994 13.0634

(1,1,2) 158.3971 125.5027 196.4437 159.3827 -1354.445 -0.01189 12.9994 13.0634

(2,1,2) 158.7296 125.8748 196.6631 159.3818 -1354.444 -0.01187 12.9994 13.0634

Note. The values in the first row represent the best ARIMA model among different combinations.
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Table 6. ARIMA (0,1,0) Estimation Output with DLOG(BSE_CLOSE)
Dep. Variable: DLOG(BSE_CLOSE)

Method: Least Squares

Date: 07/01/18       Time : 21:56

Sample (Adjusted): 6/15/2014     12/31/2017

Included observations: 186 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.001629 0.001406 1.158693 0.2481

R-squared 0.000000 Mean Dependent variable  0.00162

Adj. R-squared 0.000000 S.D. dependent variable  0.01916

S.E. of Regression 0.019169 Akaike info criterion  -5.06570

Sum squared residuals 0.067977 Schwarz criterion  -5.04836

Log likelihood 472.1106 Hannan-Quinn criterion  -5.05867

Durbib-Watson Stat 2.044222  
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Table 5. Sample Empirical Results of ARIMA (0, 1, 0) of BSE_CLOSE
Sample Period Actual Values Predicted Values Summary of the ARIMA Forecasting Model

31st Dec, 17 34153.85 34153.85 Automatic ARIMA Forecasting

7th Jan, 18 34592.39 34209.52 Selected dependent variable: DLOG(BSE_CLOSE)

14th Jan, 18 35511.57 34265.28 Date: 07/01/18         Time: 21:56

21st Jan, 18 36050.44 34321.13 Included observations: 186

28th Jan, 18 35066.75 34377.07 Forecast length: 22

4th Feb, 18 34005.76 34433.10 Number of estimated ARMA models: 9

11th Feb, 18 34010.76 34489.22 Number of non-converged estimations: 0

18th Feb, 18 34142.14 34545.43 Selected ARMA model: (0,0) (0,0)

25th Feb,18 34046.94 34601.74 AIC value: -5.05495260101

4th Mar, 18 33307.14 34658.14 

11th Mar, 18 33176.00 34714.63  

18th Mar, 18 32596.53 34771.21 

25th Mar, 18 32968.67 34827.88 

1st Apr, 18 33626.96 34884.65 

8th Apr, 18 34192.64 34941.50 

15th Apr, 18 34415.57 34998.46 

22nd Apr, 18 34969.69 35055.50 

29th Apr, 18 34915.37 35112.64 

6th May, 18 35535.78 35169.87 

13th May, 18 34848.30 35227.19 

20th May, 18 34924.87 35284.61 

27th May, 18 35227.26 35342.12 

3rd June, 18 35443.67 35339.72 

Figure 4. Actual and Forecast Graph of ARIMA (0,1,0) Model
Actual and Forecast

Forecast Actual. .



Table 8. Sample Experimental Results of ARIMA (0,1,0) of NSE_CLOSE
Sample Period Actual Values Predicted Values Summary of the ARIMA Forecasting Model

31st Dec 17 10558.85 10558.85 Automatic ARIMA Forecasting

7th Jan 18 10681.25 10577.56 Selected dependent variable: DLOG(NSE_CLOSE)

14th Jan 18 10894.70 10596.30 Date: 07/01/18         Time: 23:01

21st Jan 18 11069.65 10615.07 Included observations: 187

28th Jan 18 10760.60 10633.87 Forecast length: 22

4th Feb 18 10454.95 10652.71 Number of estimated ARMA models: 9

11th Feb 18 10452.30 10671.59 Number of non-converged estimations: 0

18th Feb 18 10491.05 10690.49 Selected ARMA model: (0,0)(0,0)

25th Feb 18 10458.35 10709.43 AIC value: -5.04795355019

4th Mar 18 10226.85 10728.41 

11th Mar 18 10195.15 10747.41  

18th Mar 18 9998.05 10766.45 

25th Mar 18 10113.70 10785.53 

1st Apr 18 10331.60 10804.64 

8th Apr 18 10480.60 10823.78 

15th Apr 18 10564.05 10842.95 

22nd Apr 18 10692.30 10862.16 

29th Apr 18 10618.25 10881.41 

6th May 18 10806.50 10900.68 

13th May 18 10596.40 10920.00 

20th May18 10605.15 10939.34 

27th May18 10696.20 10958.72 

3rd June 18 10767.65 10978.14 

Figure 5. Actual and Forecast Graph of ARIMA (0,1,0) Model
Actual and Forecast

Forecast Actual. .

Table 7. Model Selection Criteria Table
Dependent Variable: DLOG(BSE_CLOSE)  

Date: 07/01/18        Time: 21:56 

Sample: 6/08/2014     12/31/2017 

Included observations: 186 

Model LogL AIC* BIC HQ 

(0,0)(0,0) 472.11059 -5.05495 -5.02026 -5.04089 

(0,1)(0,0) 472.16480 -5.04478 -4.99275 -5.02369 

(1,0)(0,0) 472.11059 -5.05495 -5.02026 -5.04089 

(1,1)(0,0) 473.02099 -5.04323 -4.97386 -5.01512 

(0,2)(0,0) 472.69304 -5.03971 -4.97033 -5.01159 

(2,0)(0,0) 472.57814 -5.03847 -4.96910 -5.01036 

(2,2)(0,0) 474.55985 -5.03827 -4.93422 -4.99611 

(2,1)(0,0) 473.47053 -5.03731 -4.95060 -5.00217 

(1,2)(0,0) 473.38908 -5.03644 -4.94972 -5.00130 

Akaike Information Criteria
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actual and predicted values of series for the forecast length (22 observations) ranging from January 7, 2018 to June 
3, 2018. It is observed from the summary of ARIMA forecasting model that the software has selected the log of 
dependent variable after first differencing, that is,  and the forecast length is 22 weeks. The DLOG(NSE_CLOSE)
software has estimated nine models and out them, the best ARMA model selected is (0,0)(0,0). The value of 
Akaike information criterion of this model is observed to be smaller than all other models tested.     

The Figure 5 is the graphical illustration and shows the level of accuracy of the selected ARIMA model, which 
exhibits the predicted performance of the NSE against the actual performance during the (NSE_CLOSE) 
forecasted period. The line of forecasting of   continues to rise during the forecasting period, that is, NSE_CLOSE
from January 7, 2018 to June  3, 2018. When compared to the forecasted performance, the actual performance of 
NSE_CLOSE during the period from  February 4, 2018 to March 18, 2018 is quite unsatisfactory. However, the 
market revived by the end of May 6, 2018 , which continued till June 3, 2018.

Table 10. Model Selection Criteria Table
Dependent Variable: DLOG(NSE_CLOSE)  

Date: 07/01/18        Time: 23:13 

Sample: 6/08/2014     12/31/2017 

Included observations: 187 

Model LogL AIC* BIC HQ 

(0,0)(0,0) 473.98365 -5.04795 -5.01339 -5.03395 

(0,1)(0,0) 474.10016 -5.03850 -4.98666 -5.01750 

(1,0)(0,0) 474.08806 -5.03837 -4.98653 -5.01737 

(1,1)(0,0) 474.89945 -5.03635 -4.96724 -5.00835 

(0,2)(0,0) 474.41425 -5.03116 -4.96205 -5.00316 

(2,0)(0,0) 474.29483 -5.02989 -4.96077 -5.00188 

(2,2)(0,0) 476.56655 -5.03279 -4.92912 -4.99078 

(2,1)(0,0) 475.17577 -5.02861 -4.94222 -4.99361 

(1,2)(0,0) 475.11389 -5.02795 -4.94156 -4.99295 

Akaike Information Criteria
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Table 9. ARIMA (0,1,0) Estimation Output with DLOG(NSE_CLOSE)
Dependent Variable: DLOG(NSE_CLOSE)

Method: Least Squares

Date: 07/01/18       Time:23:13

Sample (Adjusted): 6/08/2014     12/31/2017

Included observations: 187 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.001770 0.001407 1.258281 0.2099

R - squared 0.000000 Mean Dependent variable  0.00177

Adj. R - squared 0.000000 S.D. dependent variable  0.01923

S.E. of Regression 0.019237 Akaike info criterion  -5.05864

Sum squared residuals. 0.068830 Schwarz criterion  -5.04137

Log likelihood 473.9837 Hannan-Quinn criterion.  -5.05164

Durbin-Watson Stat 2.066195  



According to Table 9, ARIMA (0,1,0) is relatively the best model. The model gives a very small AIC of -5.05864, 
small BIC/SIC of -5.04137, and comparatively negligible value of S.E. of regression of 0.019237. It is also 
observed from the model selection criteria table (Table 10) that out of nine models verified, ARMA(0,0)(0,0) is 
found to be the best model as its LogL, AIC, BIC, and HQ coefficients are smaller than the remaining                            
eight models.

Conclusion

The main objective of this paper is to study the stationarity of the indices of BSE and NSE and to forecast using the 
ARIMA model. For this purpose, the weekly closing indices of BSE and NSE are obtained from the website 
yahoofinance.com for the period from June 6, 2014 to June 3, 2018. The ADF test is administered to check for the 
presence of unit root to confirm the stationarity of index series. The results of the test confirm the presence of unit 
root and show non-stationarity. The ADF test has confirmed that  the given time series are stationary at                           
first difference.

For the present work, ARIMA (0,1,0) model is chosen as the top model from nine different models because it 
gratifies all the norms of goodness of fit statistics as the other eight models have not satisfied such criteria. This 
best candidate model is selected for making predictions of  and  for the period ranging BSE_CLOSE NSE_CLOSE
from January 7, 2018 to June 3, 2018 using the weekly data ranging from January 6, 2014 to December 31, 2017. 
The study also makes a comparison between predicted and actual performance of  and  BSE_CLOSE NSE_CLOSE
during the sample period. The results of the best fitted model highlight the strength of ARIMA model to forecast 
the  and  satisfactorily on a short-term basis and would guide the individuals to select BSE_CLOSE NSE_CLOSE
gainful investment options.

Research Implications

The findings of the study have the following implications for investors, researchers, and the academic fraternity.

(1) The study has elucidated the procedure for testing the stationarity in time series data using the Augmented 
Dicky - Fuller test and correlogram analysis. The study has enlightened the criterion and modus operandi for 
selection of the best ARIMA model and the methodology for forecasting BSE_CLOSE and NSE_CLOSE. This 
will aid the researchers and academicians to carry out further research. 

(2) The forecasting of market indices (BSE_CLOSE and NSE_CLOSE) and comparision of forecast and actual 
performance will assist the investors to know the market trends, risk analysis, and to take investment decisions.

Limitations of the Study and Scope for Further Research

The ARIMA model has few constraints regarding the exactness of forecasting because of its wide usage for short-
run predicting the values in the time series to notice the minor variations in the data. In case of erratic variations in 
the data set (too large variations) due to change in government policies or the structural breaks in economy 
(economic instability) etc., it turns out to be intricate to capture the accurate trend. Hence, this model turns out to 
be useless to predict long-run changes. Moreover, the forecasting using the ARIMA model would depend upon the 
hypothesis of linearity in historical data, however, there is no confirmation that  or  are BSE_CLOSE NSE_CLOSE
linear in nature.

Forecasting of BSE_CLOSE and NSE_CLOSE using ARIMA model was made with the fundamental 
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supposition that the given series follow an absolutely linear model. Non linear prediction methods using latest 
softwares may also be considered with less error (white noise) term. Further, the study may be extended to 
multivariate time series forecasting, that is, predicting a dependent variable using more than one independent 
varaibles. In future, similar studies may be conducted for forecasting various economic variables, that is, gold and 
silver prices, curency exchange rates, individual stock prices, production from agriculture and industry, electricity 
consumption, export performance of various industries, etc.
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